首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Imaging the Photoionization of Individual CdSe/CdS Core-Shell Nanocrystals on n- and p-Type Silicon Substrates with Thin Oxides
【24h】

Imaging the Photoionization of Individual CdSe/CdS Core-Shell Nanocrystals on n- and p-Type Silicon Substrates with Thin Oxides

机译:用薄氧化物成像在n型和p型硅衬底上单个CdSe / CdS核壳纳米晶体的光电离

获取原文
获取原文并翻译 | 示例
           

摘要

The low-intensity photoionization of individual semiconductor nanocrystals, at 23 ℃ in dry nitrogen, is time-resolved over many hours for both S (532-nm excitation) and P (395-nm excitation) nanocrystal excited states using electrostatic force microscopy. Over 7000 calibrated charge measurements have been made on 14- and 21-A-thick oxide layers. Photoexcited electrons tunnel across the oxide into the silicon, and multiple charges can build up on individual nanocrystals at intensities of only 0.1-0.01 W/cm~2. The silicon dopant type influences the net nanocrystal charging via the interfacial band bending; P-type subtrates show a faster nanocrystal reneutralization rate due to their higher interfacial electron concentration. There is a huge range of photoionzation behavior for individual nanocrystals. This behavior is different for 395- and 532-nm excitation in the same nanocrystal. This individuality seems in part to reflect tunneling through spatially localized defect states in the oxide. The line widths of spatial charge images of individual nanocrystals and the semicontinuous rate of charge re-neutralization after excitation suggest that we observe trapped electron motion in the adjacent oxide and/or on the nanocrystal surface, in addition to the ionized nanocrystal. On average, tunneling of the excited P electron is faster by 1-2 orders of magnitude than that of the S electron; the data show direct photoionization from the excited P state. A kinetic model is developed, including the effect of charging energy on tunneling rate, and applied to ensemble average behavior. There is no quantitative agreement of the tunneling-rate dependence on oxide thickness and excitation energy with the simple 1D effective mass tunneling model. However, overall observed trends are rationalized in light of current thin-oxide tunneling literature.
机译:使用静电力显微镜,在23℃的干燥氮气中,单个半导体纳米晶体的低强度光电离可在多个小时内时间分辨为S(532 nm激发)和P(395 nm激发)纳米晶激发态。在14A和21A厚的氧化物层上进行了7000多次校准电荷测量。光激发电子穿过氧化物隧穿进入硅,并且在单个纳米晶体上可以仅​​以0.1-0.01 W / cm〜2的强度积累多个电荷。硅掺杂剂类型通过界面能带弯曲影响净纳米晶体电荷。由于其较高的界面电子浓度,P型次晶显示出更快的纳米晶体中和速率。单个纳米晶体的光电离行为范围很大。对于同一纳米晶体中的395和532 nm激发,此行为是不同的。这种个性似乎部分反映了通过氧化物中空间局部缺陷状态的隧穿。单个纳米晶体的空间电荷图像的线宽和激发后电荷重新中和的半连续速率表明,除了电离的纳米晶体之外,我们还观察到了邻近氧化物和/或纳米晶体表面的电子陷阱。平均而言,受激发的P电子的隧穿速度比S电子的隧穿速度快1-2个数量级。数据显示从激发的P状态直接进行光电离。建立了动力学模型,包括充电能量对隧穿速率的影响,并将其应用于整体平均行为。对于简单的一维有效质量隧穿模型,隧穿速率对氧化物厚度和激发能的依赖性尚无定量协议。但是,根据当前的薄氧化物隧穿文献,观察到的总体趋势是合理的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号