首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Application of Heisenberg's S matrix program to the angular scattering of the H + D_2(v _i = 0, j _i = 0) → HD(v _f = 3, j _f = 0) + D reaction: Piecewise S matrix elements using linear, quadratic, step-function, and top-hat parametrizations
【24h】

Application of Heisenberg's S matrix program to the angular scattering of the H + D_2(v _i = 0, j _i = 0) → HD(v _f = 3, j _f = 0) + D reaction: Piecewise S matrix elements using linear, quadratic, step-function, and top-hat parametrizations

机译:Heisenberg的S矩阵程序在H + D_2(v _i = 0,j _i = 0)→HD(v _f = 3,j _f = 0)+ D反应的角散射中的应用:分段S矩阵元素使用线性,二次,阶跃函数和礼帽参数化

获取原文
获取原文并翻译 | 示例
           

摘要

A previous paper by Shan and Connor (Phys. Chem. Chem. Phys. 2011, 13, 8392) reported the surprising result that four simple parametrized S matrices can reproduce the forward-angle glory scattering of the H + D_2(v _i=0,j_i=0) → HD(v_f=3,j_f=0) + D reaction, whose differential cross section (DCS) had been computed in a state-of-the-art scattering calculation for a state-of-the-art potential energy surface. Here, v and j are vibrational and rotational quantum numbers, respectively, and the translational energy is 1.81 eV. This paper asks the question: Can we replace the analytic functions (of class C~ω) used by Shan-Connor with simpler mathematical functions and still reproduce the forward-angle glory scattering? We first construct S matrix elements (of class C~0) using a quadratic phase and a piecewise-continuous pre-exponential factor consisting of three pieces. Two of the pieces are constants, with one taking the value N (a real normalization constant) at small values of the total angular momentum number, J; the other piece has the value 0 at large J. These two pieces are joined at intermediate values of J by either a straight line, giving rise to the linear parametrization (denoted param L), or a quadratic curve, which defines the quadratic parametrization (param Q). We find that both param L and param Q can reproduce the glory scattering for center-of-mass reactive scattering angles, θ_R□ 30°. Second, we use a piecewise-discontinuous pre-exponential factor and a quadratic phase, giving rise to a step-function parametrization (param SF) and a top-hat parametrization (param TH). We find that both param SF and param TH can reproduce the forward-angle scattering, even though these class C~(-1) parametrizations are usually considered too simplistic to be useful for calculations of DCSs. We find that an ultrasimplistic param THz, which is param TH with a phase of zero, can also reproduce the glory scattering at forward angles. The S matrix elements for param THz are real and consist of five nonzero equal values, given by S?_J = 0.02266, for the window, J = 21(1)25. Param THz is sufficiently simple that we can derive closed forms for the partial wave scattering amplitude, f(θ_R), and the near-side (N) and far-side (F) subamplitudes. We show that window representations of f(θ_R) provide important insights into the range of J values that contribute to the reaction dynamics. Other theoretical techniques used are NF theory for the analysis of DCSs and full and NF local angular momentum theory, in both cases including up to three resummations of f(θ _R) before making the NF decomposition. Finally, we investigate the accuracy of various semiclassical glory theories for the DCS of param L. By varying one phase parameter for param L, we show that the uniform semiclassical approximation is accurate from θ_R = 0° to close to θ_R = 180°. Our approach is an example of a "weak" form of Heisenberg's S matrix program, which does not use a potential energy surface(s); rather it focuses on the properties of the S matrix. Our method is easy to apply to DCSs from experimental measurements or from computer simulations.
机译:Shan和Connor的先前论文(Phys。Chem。Chem。Phys。2011,13,8392)报告了令人惊讶的结果,即四个简单的参数化S矩阵可以再现H + D_2(v _i = 0)的前向角荣耀散射。 ,j_i = 0)→HD(v_f = 3,j_f = 0)+ D反应,其微分横截面(DCS)已通过最新散射计算得出势能面。此处,v和j分别是振动和旋转量子数,平移能为1.81 eV。本文提出一个问题:是否可以用更简单的数学函数代替Shan-Connor使用的解析函数(C〜ω类),并且仍然再现前向角的荣耀散射?我们首先使用二次相位和由三段组成的分段连续的预指数因子构造S个矩阵元素(C〜0类)。其中两个是常数,其中一个在总角动量J的较小值处取值为N(实际归一化常数)。另一段在大J时的值为0。这两个段在J的中间值处通过一条直线连接,从而产生线性参数化(表示为参数L),或者定义了二次曲线,该曲线定义了二次参数化(参数Q)。我们发现参数L和参数Q都可以重现质心反应性散射角θ_R□30°的荣耀散射。其次,我们使用分段不连续的预指数因子和二次相位,从而产生阶跃函数参数化(参数SF)和礼帽式参数化(参数TH)。我们发现,尽管通常认为这些C〜(-1)类参数化过于简单以至于无法用于DCS的计算,但参数SF和参数TH都可以再现前角散射。我们发现,超简化的参数THz(相位为零的参数TH)也可以重现前向角的荣耀散射。参数THz的S矩阵元素是实数,并且由五个非零相等值组成,对于窗口J = 21(1)25,由S?_J = 0.02266给出。参数THz非常简单,我们可以导出部分波散射振幅f(θ_R)以及近侧(N)和远侧(F)子振幅的闭合形式。我们显示f(θ_R)的窗口表示形式提供了对有助于反应动力学的J值范围的重要了解。使用的其他理论技术包括用于分析DCS的NF理论,完整和NF局部角动量理论,在这两种情况下,在进行NF分解之前,最多包括三个f(θ_R)的恢复。最后,我们研究了参数L的DCS的各种半经典荣耀理论的准确性。通过改变参数L的一个相位参数,我们证明了均匀的半经典近似值在θ_R= 0°到接近θ_R= 180°时是准确的。我们的方法是海森堡S矩阵程序的“弱”形式的示例,该程序不使用势能面。而是着眼于S矩阵的属性。我们的方法很容易通过实验测量或计算机模拟应用于DCS。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号