首页> 外文期刊>Physical chemistry chemical physics: PCCP >Angular scattering using parameterized S matrix elements for the H + P2(v1 = 0, j_i = 0) - HD(v_f =3, j_f = 0) + D reaction: an example of Heisenberg's S matrix programme
【24h】

Angular scattering using parameterized S matrix elements for the H + P2(v1 = 0, j_i = 0) - HD(v_f =3, j_f = 0) + D reaction: an example of Heisenberg's S matrix programme

机译:使用H + P2(v1 = 0,j_i = 0)-> HD(v_f = 3,j_f = 0)+ D反应的参数化S矩阵元素进行角散射:海森堡S矩阵程序的示例

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A neglected topic in the theory of reactive scattering is the use of parameterized scattering (S) matrix elements to calculate differential cross sections (DCSs). We construct four simple parameterizations, whose moduli are smooth step-functions and whose phases are quadratic functions of the total angular momentum quantum number. Application is made to forward glory scattering in the DCS of the H + D2(v_i = 0, j_i= 0) -> HD(v_f = 3, j_f = 0) + D reaction at a translational energy of 1.81 eV, where v and j are vibrational and rotational quantum numbers respectively. The parameterized S matrix elements can reproduce the forward scattering for centre-of-mass reactive scattering angles up to 30° and can identify the total angular momenta (equivalently, impact parameters) that contribute to the glory. The theoretical techniques employed to analyze structure in the DCS include: nearside-farside theory, local angular momentum theory-in both cases incorporating resummations of the partial wave series representation of the scattering amplitude-and the uniform semiclassical theory of forward glory scattering. Our approach is an example of Heisenberg's S matrix programme, in which no potential energy surface is used. Our calculations for the DCS using the four parameterized S matrix elements are counterexamples to the following universal statements often found in the chemical physics literature: "every molecular scattering investigation needs detailed information about the interaction potential," and "an accurate potential energy surface is an essential element in carrying out simulations of a chemical reaction". Both these statements are false.
机译:反应散射理论中一个被忽略的话题是使用参数化散射(S)矩阵元素来计算微分截面(DCS)。我们构造了四个简单的参数化,其模量是光滑的阶跃函数,其相位是总角动量量子数的二次函数。应用在H + D2(v_i = 0,j_i = 0)-> HD(v_f = 3,j_f = 0)+ D反应的DCS中以1.81 eV的平移能向前荣耀散射,其中v和j分别是振动和旋转量子数。参数化的S矩阵元素可以重现质量中心反应性散射角高达30°的正向散射,并可以识别有助于荣耀的总角动量(等效地,冲击参数)。在DCS中用于分析结构的理论技术包括:近侧-远侧理论,局部角动量理论(在两种情况下都结合了散射幅度的部分波序列表示的恢复)和前向荣耀散射的统一半经典理论。我们的方法是海森堡S矩阵程序的一个示例,其中不使用势能面。我们使用四个参数化S矩阵元素对DCS进行的计算是对以下经常在化学物理学文献中找到的通用说法的反例:“每个分子散射研究都需要有关相互作用势的详细信息”,而“准确的势能面是进行化学反应模拟的基本要素”。这些陈述都是错误的。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号