首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Molecular mechanism of constitutive endocytosis of acid-sensing ion channel 1a and its protective function in acidosis-induced neuronal death
【24h】

Molecular mechanism of constitutive endocytosis of acid-sensing ion channel 1a and its protective function in acidosis-induced neuronal death

机译:酸敏感离子通道1a组成型内吞的分子机制及其在酸中毒所致神经元死亡中的保护作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the peripheral and CNSs, which critically contribute to a variety of pathophysiological conditions that involve tissue acidosis, such as ischemic stroke and epileptic seizures. However, the trafficking mechanisms of ASICs and the related proteins remain largely unknown. Here, we demonstrate that ASIC1a, the main ASIC subunit in the brain, undergoes constitutive endocytosis in a clathrin- and dynamin-dependent manner in both mouse cortical neurons and heterologous cell cultures. The endocytosis of ASIC1a was inhibited by either the small molecular inhibitor tyrphostin A23 or knockdown of the core subunit of adaptor protein 2 (AP2) μ2 using RNA interference, supporting a clathrin-dependent endocytosis of ASIC1a. In addition, the internalization of ASIC1a was blocked by dominant-negative dynamin1 mutation K44A and the small molecular inhibitor dynasore, suggesting that it is also dynamin-dependent. We show that the membrane-proximal residues 465LCRRG469 at the cytoplasmic C terminus of ASIC1a are critical for interaction with the endogenous adaptor protein complex and inhibition of ASIC1a internalization strongly exacerbated acidosis-induced death of cortical neurons from wild-type but not ASIC1a knock-out mice. Together, these results reveal the molecular mechanism of ASIC1a internalization and suggest the importance of endocytic pathway in functional regulation of ASIC1a channels as well as neuronal damages mediated by these channels during neurodegeneration.
机译:酸敏感离子通道(ASICs)是在外周和CNS中广泛表达的质子门控阳离子通道,对导致涉及组织酸中毒的多种病理生理状况(例如缺血性中风和癫痫发作)起关键作用。但是,ASIC和相关蛋白的运输机制仍然未知。在这里,我们证明了ASIC1a,大脑中的主要ASIC亚基,在小鼠皮质神经元和异源细胞培养物中均以网格蛋白和动力蛋白依赖性方式经历组成型内吞作用。小分子抑制剂tyrphostin A23或通过RNA干扰敲低衔接蛋白2(AP2)μ2的核心亚基抑制了ASIC1a的内吞作用,从而支持了依赖网格蛋白的内吞作用。此外,ASIC1a的内在化被显性负性dynamin1突变K44A和小分子抑制剂dynasore阻断,这表明它也依赖于dynamin。我们显示在ASIC1a的胞质C末端的膜近端残基465LCRRG469对于与内源性衔接蛋白复合物的相互作用至关重要,并且对ASIC1a内在化的抑制作用严重加剧了酸中毒诱发的皮质神经元从野生型而非ASIC1a敲除的死亡老鼠。在一起,这些结果揭示了ASIC1a内在化的分子机制,并暗示了内吞途径在ASIC1a通道的功能调节以及神经退行性变期间由这些通道介导的神经元损伤中的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号