...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Drosophila Psidin Regulates Olfactory Neuron Number and Axon Targeting through Two Distinct Molecular Mechanisms
【24h】

Drosophila Psidin Regulates Olfactory Neuron Number and Axon Targeting through Two Distinct Molecular Mechanisms

机译:果蝇Psidin通过两个不同的分子机制调节嗅觉神经元数量和轴突靶向。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The formation of neuronal circuits is a key process of development, laying foundations for behavior. The cellular mechanisms regulating circuit development are not fully understood. Here, we reveal Psidin as an intracellular regulator of Drosophila olfactory system formation. We show that Psidin is required in several classes of olfactory receptor neurons (ORNs) for survival and subsequently for axon guidance. During axon guidance, Psidin functions as an actin regulator and antagonist of Tropomyosin. Accordingly, Psidin-deficient primary neurons in culture display growth cones with significantly smaller lamellipodia. This lamellipodial phenotype, as well as the mistargeting defects in vivo, is suppressed by parallel removal of Tropomyosin. In contrast, Psidin functions as the noncatalytic subunit of the N-acetyltransferase complex B (NatB) to maintain the number of ORNs. Psidin physically binds the catalytic NatB subunit CG14222 (dNAA20) and functionally interacts with it in vivo. We define the dNAA20 interaction domain within Psidin and identify a conserved serine as a candidate for phosphorylation-mediated regulation of NatB complex formation. A phosphomimetic mutation of this serine showed severely reduced binding to dNAA20 in vitro. In vivo, it fully rescued the targeting defect but not the reduction in neuron numbers. In addition, we show that a different amino acid point mutation shows exactly the opposite effect by rescuing only the cell number but not the axon targeting defect. Together, our data suggest that Psidin plays two independent developmental roles via the acquisition of separate signaling pathways, both of which contribute to the formation of olfactory circuits.
机译:神经回路的形成是关键的发展过程,为行为奠定了基础。尚不完全了解调节电路发育的细胞机制。在这里,我们揭示了Psidin作为果蝇嗅觉系统形成的细胞内调节剂。我们表明,Psidin是几类嗅觉受体神经元(ORNs)所必需的,以使其存活并随后用于轴突的引导。在轴突引导过程中,Psidin充当肌动蛋白调节剂和Tropomyosin的拮抗剂。因此,培养物中Psidin缺陷的原代神经元显示出具有显着较小的lamellipodia的生长锥。通过平行去除Tropomyosin,可以抑制这种lalamlipodial表型以及体内错误定位的缺陷。相反,Psidin充当N-乙酰基转移酶复合物B(NatB)的非催化亚基,以维持ORN的数量。 Psidin物理结合催化性NatB亚基CG14222(dNAA20),并在体内与其功能性相互作用。我们定义Psidin内的dNAA20相互作用域,并确定保守的丝氨酸作为磷酸化介导的NatB复合物形成调控的候选者。该丝氨酸的磷酸化突变显示在体外与dNAA20的结合大大降低。在体内,它可以完全挽救靶向缺陷,但不能挽救神经元数量的减少。此外,我们显示出不同的氨基酸点突变仅通过拯救细胞数量而不拯救轴突靶向缺陷而显示出完全相反的效果。在一起,我们的数据表明,Psidin通过获取独立的信号传导途径起着两个独立的发展作用,两者均有助于嗅觉回路的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号