首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics.
【24h】

A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics.

机译:冗余的人类三维指向运动的计算模型:独立的空间和时间运动计划的集成简化了运动动力学。

获取原文
获取原文并翻译 | 示例
           

摘要

Few computational models have addressed the spatiotemporal features of unconstrained three-dimensional (3D) arm motion. Empirical observations made on hand paths, speed profiles, and arm postures during point-to-point movements led to the assumption that hand path and arm posture are independent of movement speed, suggesting that the geometric and temporal properties of movements are decoupled. In this study, we present a computational model of 3D movements for an arm with four degrees of freedom based on the assumption that optimization principles are separately applied at the geometric and temporal levels of control. Geometric properties (path and posture) are defined in terms of geodesic paths with respect to the kinetic energy metric in the Riemannian configuration space. Accordingly, a geodesic path can be generated with less muscular effort than on any other, nongeodesic path, because the sum of all configuration-speed-dependent torques vanishes. The temporal properties of the movement (speed) are determined in task space by minimizing the squared jerk along the selected end-effector path. The integration of both planning levels into a single spatiotemporal representation simplifies the control of arm dynamics along geodesic paths and results in movements with near minimal torque change and minimal peak value of kinetic energy. Thus, the application of Riemannian geometry allows for a reconciliation of computational models previously proposed for the description of arm movements. We suggest that geodesics are an emergent property of the motor system through the exploration of dynamical space. Our data validated the predictions for joint trajectories, hand paths, final postures, speed profiles, and driving torques.
机译:很少有计算模型可以解决不受约束的三维(3D)手臂运动的时空特征。对点到点运动过程中手部路径,速度曲线和手臂姿势的经验观察得出这样的假设,即手部路径和手臂姿势与运动速度无关,这表明运动的几何和时间特性是分离的。在这项研究中,我们基于优化原理分别应用于控制的几何和时间级别的假设,提出了具有四个自由度的手臂的3D运动计算模型。几何特性(路径和姿势)是根据大地路径相对于黎曼配置空间中的动能度量定义的。因此,与所有其他非大地路径相比,可以以更少的肌肉力量生成大地测量路径,因为所有依赖于速度的配置扭矩之和消失了。通过最小化沿所选末端执行器路径的平方冲击来确定任务空间中运动(速度)的时间特性。将两个计划级别集成到单个时空表示中,可简化沿测地路径的手臂动力学控制,并以几乎最小的扭矩变化和最小的动能峰值进行运动。因此,黎曼几何的应用允许协调先前提出的用于描述手臂运动的计算模型。通过动力学空间的探索,我们认为测地线是电机系统的新兴属性。我们的数据验证了关节轨迹,手部路径,最终姿势,速度曲线和驱动扭矩的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号