首页> 外文期刊>The Journal of Chemical Physics >Influence of surface vacancy defects on the carburisation of Fe 110 surface by carbon monoxide
【24h】

Influence of surface vacancy defects on the carburisation of Fe 110 surface by carbon monoxide

机译:表面空位缺陷对一氧化碳对Fe 110表面渗碳的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Adsorption and dissociation of gaseous carbon monoxide (CO) on metal surfaces is one of the most frequently occurring processes of carburisation, known as primary initiator of metal dusting corrosion. Among the various factors that can significantly influence the carburisation process are the intrinsic surface defects such as single surface vacancies occurring at high concentrations due to their low formation energy. Intuitively, adsorption and dissociation barriers of CO are expected to be lowered in the vicinity of a surface vacancy, due to the strong attractive interaction between the vacancy and the C atom. Here the adsorption energies and dissociation pathways of CO on clean and defective Fe 110 surface are explored by means of density functional theory. Interestingly, we find that the O adatom, resulting from the CO dissociation, is unstable in the electron-deficit neighbourhood of the vacancy due to its large electron affinity, and raises the barrier of the carburisation pathway. Still, a full comparative study between the clean surface and the vacancy-defected surface reveals that the complete process of carburisation, starting from adsorption to subsurface diffusion of C, is more favourable in the vicinity of a vacancy defect. Published by AIP Publishing.
机译:气态一氧化碳(CO)在金属表面的吸附和分解是渗碳过程中最常发生的过程之一,被称为金属喷粉腐蚀的主要引发剂。可以显着影响渗碳过程的各种因素中,有固有的表面缺陷,例如由于形成能量低而在高浓度下出现的单表面空位。凭直觉,由于空位与C原子之间的强吸引力相互作用,预期在表面空位附近降低CO的吸附和解离势垒。在此,利用密度泛函理论探讨了在清洁和有缺陷的Fe 110表面上CO的吸附能和解离途径。有趣的是,我们发现,由于CO的离解而导致的O原子由于其较大的电子亲和力而在空位的电子亏缺附近不稳定,并增加了渗碳途径的壁垒。仍然,在清洁表面和空位变形表面之间进行的全面比较研究表明,从空位缺陷附近的渗碳的完整过程(从C的吸附到表面扩散)开始更加有利。由AIP Publishing发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号