...
首页> 外文期刊>The Journal of Chemical Physics >From the depletion attraction to the bridging attraction: The effect of solvent molecules on the effective colloidal interactions
【24h】

From the depletion attraction to the bridging attraction: The effect of solvent molecules on the effective colloidal interactions

机译:从耗尽吸引到架桥吸引:溶剂分子对有效胶体相互作用的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Depletion attraction induced by non-adsorbing polymers or small particles in colloidal solutions has been widely used as a model colloidal interaction to understand aggregation behavior and phase diagrams, such as glass transitions and gelation. However, much less attention has been paid to study the effective colloidal interaction when small particles/molecules can be reversibly attracted to large colloidal particles. At the strong attraction limit, small particles can introduce bridging attraction as it can simultaneously attach to neighbouring large colloidal particles. We use Baxter's multi-component method for sticky hard sphere systems with the Percus-Yevick approximation to study the bridging attraction and its consequence to phase diagrams, which are controlled by the concentration of small particles and their interaction with large particles. When the concentration of small particles is very low, the bridging attraction strength increases very fast with the increase of small particle concentration. The attraction strength eventually reaches a maximum bridging attraction (MBA). Adding more small particles after the MBA concentration keeps decreasing the attraction strength until reaching a concentration above which the net effect of small particles only introduces an effective repulsion between large colloidal particles. These behaviors are qualitatively different from the concentration dependence of the depletion attraction on small particles and make phase diagrams very rich for bridging attraction systems. We calculate the spinodal and binodal regions, the percolation lines, the MBA lines, and the equivalent hard sphere interaction line for bridging attraction systems and have proposed a simple analytic solution to calculate the effective attraction strength using the concentrations of large and small particles. Our theoretical results are found to be consistent with experimental results reported recently. (C) 2015 AIP Publishing LLC.
机译:由胶体溶液中的非吸附性聚合物或小颗粒引起的耗尽吸引力已被广泛用作胶体相互作用的模型,以了解聚集行为和相图,例如玻璃化转变和凝胶化。然而,当小颗粒/分子可逆地吸引到大胶体颗粒时,研究有效胶体相互作用的注意力已经很少了。在强吸附极限下,小颗粒会引入桥接吸引力,因为它可以同时附着到相邻的大胶体颗粒上。我们使用Percus-Yevick近似对粘性硬球系统使用Baxter的多组分方法来研究桥接吸引力及其对相图的影响,后者受小颗粒的浓度及其与大颗粒的相互作用的控制。当小颗粒的浓度非常低时,桥接吸引力随小颗粒浓度的增加而迅速增加。吸引力强度最终达到最大桥接吸引力(MBA)。在MBA浓度之后添加更多的小颗粒会不断降低吸引力,直到达到一个浓度为止,在该浓度以上,小颗粒的净作用只会在大胶体颗粒之间产生有效的排斥力。这些行为在质量上与耗尽吸引物对小颗粒的浓度依赖性不同,并使相图对于桥接吸引系统非常丰富。我们计算了桥接吸引系统的旋节线和双节线区域,渗流线,MBA线以及等效的硬球相互作用线,并提出了一种简单的解析解决方案,使用大小颗粒的浓度来计算有效吸引强度。我们的理论结果与最近报道的实验结果一致。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号