首页> 外文期刊>The Journal of Chemical Physics >Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations
【24h】

Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations

机译:从吉布斯合奏蒙特卡洛模拟中准确,准确地确定关键特性

获取原文
获取原文并翻译 | 示例
           

摘要

Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor-liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8s and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields T-c = 1.3128 +/- 0.0016, rho(c) = 0.316 +/- 0.004, and p(c) = 0.1274 +/- 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 <= rho(t) <= 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using r(cut) = 3.5s yield Tc and pc that are higher by 0.2% and 1.4% than simulations with r(cut) <= 5 and 8 sigma but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that r(cut) = 8 sigma is insufficient to obtain accurate results. Additional GEMC simulations for hard-core square-well particles with various ranges of the attractive well and for n-decane molecules represented by the TraPPE force field yield data that support the trends observed for Lennard-Jones particles. The finite-size dependence of the critical properties obtained from GEMC simulations is significantly smaller than those from grand-canonical ensemble simulations. Thus, when resources are not available for a rigorous finite-size scaling study, GEMC simulations provide a straightforward route to determine fairly accurate critical properties using relatively small system sizes. (C) 2015 AIP Publishing LLC.
机译:自Panagiotopoulos [Mol。物理61,813(1997)],吉布斯合奏蒙特卡罗(GEMC)方法已成为计算汽-液相平衡的最流行的基于粒子的模拟方法。然而,由于严格的有限尺寸缩放方法无法应用于体积波动的模拟,因此GEMC模拟在近临界区域的有效性受到质疑。瓦洛[Mol。同谋29,627(2003)]认为,GEMC模拟将导致对临界温度的虚假高估。最近,Patel等人。 [J.化学物理134,024101(2011)]指出,在近临界区域使用分析性尾部校正会出现问题。为了解决这些问题,我们对近临界区域的Lennard-Jones粒子执行了广泛的GEMC模拟,改变了系统大小,整体系统密度和截止距离。对于N = 5500粒子,在8s处可能被截断和分析尾部校正的系统,在1.27至1.305范围内的温度外推GEMC模拟数据可得出Tc = 1.3128 +/- 0.0016,rho(c)= 0.316 + / -0.004,p(c)= 0.1274 +/- 0.0013,与Potoff和Panagiotopoulos确定的热力学极限非常吻合[J.化学物理109,10914(1998)]使用宏规范的蒙特卡洛模拟和有限尺寸缩放。使用具有不同整体系统密度(0.296 <= rho(t)<= 0.336)的GEMC模拟估算的关键特性在统计不确定性内是一致的。对于具有尾部校正的模拟,使用r(cut)= 3.5s获得的数据的Tc和pc分别比r(cut)<= 5和8 sigma的模拟高出0.2%和1.4%,但仍然有95%的置信区间重叠。相比之下,GEMC的电势被截断和移位的结果表明,r(cut)= 8 sigma不足以获得准确的结果。对于具有各种吸引孔范围的硬核方阱粒子以及由TraPPE力场表示的正癸烷分子,额外的GEMC模拟得出的数据支持了Lennard-Jones粒子的趋势。从GEMC模拟获得的关键属性的有限大小依赖性显着小于从大正则合奏模拟获得的关键属性。因此,当没有足够的资源用于严格的有限尺寸缩放研究时,GEMC模拟提供了一种直接的途径,可以使用相对较小的系统大小来确定相当准确的关键特性。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号