...
首页> 外文期刊>The Journal of Chemical Physics >Crystallization of Lennard-Jones nanodroplets: From near melting to deeply supercooled
【24h】

Crystallization of Lennard-Jones nanodroplets: From near melting to deeply supercooled

机译:Lennard-Jones纳米微滴的结晶:从接近融化到深度过冷

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We carry out molecular dynamics (MD) and Monte Carlo (MC) simulations to characterize nucleation in liquid clusters of 600 Lennard-Jones particles over a broad range of temperatures. We use the formalism of mean first-passage times to determine the rate and find that Classical Nucleation Theory (CNT) predicts the rate quite well, even when employing simple modelling of crystallite shape, chemical potential, surface tension, and particle attachment rate, down to the temperature where the droplet loses metastability and crystallization proceeds through growth-limited nucleation in an unequilibrated liquid. Below this crossover temperature, the nucleation rate is still predicted when MC simulations are used to directly calculate quantities required by CNT. Discrepancy in critical embryo sizes obtained from MD and MC arises when twinned structures with five-fold symmetry provide a competing free energy pathway out of the critical region. We find that crystallization begins with hcp-fcc stacked precritical nuclei and differentiation to various end structures occurs when these embryos become critical. We confirm that using the largest embryo in the system as a reaction coordinate is useful in determining the onset of growth-limited nucleation and show that it gives the same free energy barriers as the full cluster size distribution once the proper reference state is identified. We find that the bulk melting temperature controls the rate, even though the solid-liquid coexistence temperature for the droplet is significantly lower. The value of surface tension that renders close agreement between CNT and direct rate determination is significantly lower than what is expected for the bulk system. (C) 2015 AIP Publishing LLC.
机译:我们进行分子动力学(MD)和蒙特卡洛(MC)模拟,以表征600 Lennard-Jones粒子在较宽温度范围内的液体簇中的形核。我们使用平均首次通过时间的形式来确定速率,发现经典成核理论(CNT)可以很好地预测速率,即使采用简单的微晶形状,化学势,表面张力和颗粒附着率模型,到液滴失去亚稳性的温度,并且结晶在不平衡液体中通过生长受限的成核作用进行结晶。在此交叉温度以下,当使用MC模拟直接计算CNT所需的量时,仍可以预测成核速率。当具有五倍对称性的孪生结构提供竞争性的自由能途径离开关键区域时,从MD和MC获得的关键胚胎大小会出现差异。我们发现结晶始于hcp-fcc堆叠的前临界核,并且当这些胚胎变得临界时,发生了向各种末端结构的分化。我们确认,使用系统中最大的胚胎作为反应坐标可用于确定生长受限的成核的发生,并表明一旦确定了适当的参考状态,它就会提供与整个簇大小分布相同的自由能垒。我们发现,尽管液滴的固液共存温度明显降低,但本体熔化温度控制着速率。使CNT与直接速率测定紧密相关的表面张力值明显低于本体系统的预期值。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号