首页> 外文期刊>The Journal of Chemical Physics >Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation
【24h】

Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

机译:使用全原子和粗粒分子模拟探测T4溶菌酶的折叠状态和机械展开途径

获取原文
获取原文并翻译 | 示例
           

摘要

The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant-while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L. (C) 2015 AIP Publishing LLC.
机译:噬菌体T4溶菌酶(T4L)是由N末端和C结构域组成的原型模块蛋白,已被广泛研究以了解模块蛋白的折叠/展开机制。为了提供有关T4L折叠状态稳定性和机械展开行为的详细结构和动态见解,我们对T4L的野生型(WT)和圆排列(CP)变体进行了广泛的平衡和操纵分子动力学模拟使用全原子力场和粗粒度力场。我们对折叠状态的全原子和粗粒度模拟一致地发现,在隔离状态下C域比N域具有更高的稳定性,这与过去对T4L进行的恒温研究一致。尽管全原子模拟不能完全解释光学镊子研究中观察到的WT和CP变体的机械展开行为,但基于Go模型或改进的弹性网络模型(mENM)的粗粒度模拟在质量上是一致的实验发现,WT的展开协作性比CP变体更好。有趣的是,这两个粗粒度模型针对观察到的WT和CP变体之间的协同性变化预测了不同的结构机制,而Go模型预测了通过循环排列对展开途径进行的较小修改(即,保留了N -EN结构域在C结构域之前展开),mENM预测了展开途径的显着变化(例如,WT和CP变体中N / C结构域展开的不同顺序)。在模拟的基础上,我们分析了这些模型的局限性和关键区别,并为可用于未来实验的可预测性实验提供了可预测的预测,以解决T4L协同折叠/展开的结构机理。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号