首页> 外文期刊>The Journal of Chemical Physics >Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations
【24h】

Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations

机译:运动方程耦合集群框架内的自旋轨道耦合:理论,实现和基准计算

获取原文
获取原文并翻译 | 示例
           

摘要

We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results. (C) 2015 AIP Publishing LLC.
机译:我们提出了一种形式主义和一种实现方法,用于计算EOM-CCSD(具有单和双取代的运动方程耦合群集)方法内的自旋轨道耦合(SOC)。考虑了以下EOM-CCSD变体:用于激发能的EOM-CCSD(EOM-EE-CCSD),具有自旋翻转的EOM-CCSD(EOM-SF-CCSD),用于电离势的EOM-CCSD(EOM-IP- CCSD)和电子附件(EOM-EA-CCSD)。我们采用一种摄动方法,其中使用零阶非相对论波函数将SOCs计算为Breit-Pauli Hamiltonian的各个部分的矩阵元素。对于财产计算,我们遵循期望值方法,而不是响应理论公式。完整的双电子处理和均场近似(部分解释了两个电子的贡献)均已实现,并使用了几个元素周期表中第四行之前的小分子作为基准。基准测试结果显示了微扰处理和平均场近似的出色性能。当使用适当的基础集时,所考虑示例的实验误差低于5%。关于基础要求的发现与以前的研究一致。分析了不同相关处理对零阶波函数的影响。总体而言,EOM-IP-CCSD,EOM-EA-CCSD,EOM-EE-CCSD和EOM-SF-CCSD波动函数产生的SOC彼此之间(以及与实验值(如果可用))非常吻合。使用提供目标状态更平衡描述的EOM-CCSD方法可获得更准确的结果。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号