首页> 外文期刊>The Journal of Chemical Physics >Predicting the effect of angular momentum on the dissociation dynamics of highly rotationally excited radical intermediates
【24h】

Predicting the effect of angular momentum on the dissociation dynamics of highly rotationally excited radical intermediates

机译:预测角动量对高旋转激发自由基中间体离解动力学的影响

获取原文
获取原文并翻译 | 示例
       

摘要

We present a model which accurately predicts the net speed distributions of products resulting from the unimolecular decomposition of rotationally excited radicals. The radicals are produced photolytically from a halogenated precursor under collision-free conditions so they are not in a thermal distribution of rotational states. The accuracy relies on the radical dissociating with negligible energetic barrier beyond the endoergicity. We test the model predictions using previous velocity map imaging and crossed laser-molecular beam scattering experiments that photolytically generated rotationally excited CD2CD2OH and C3H6OH radicals from brominated precursors; some of those radicals then undergo further dissociation to CD2CD2 + OH and C3H6 + OH, respectively. We model the rotational trajectories of these radicals, with high vibrational and rotational energy, first near their equilibrium geometry, and then by projecting each point during the rotation to the transition state (continuing the rotational dynamics at that geometry). This allows us to accurately predict the recoil velocity imparted in the subsequent dissociation of the radical by calculating the tangential velocities of the CD2CD2/C3H6 and OH fragments at the transition state. The model also gives a prediction for the distribution of angles between the dissociation fragments' velocity vectors and the initial radical's velocity vector. These results are used to generate fits to the previously measured time-of-flight distributions of the dissociation fragments; the fits are excellent. The results demonstrate the importance of considering the precession of the angular velocity vector for a rotating radical. We also show that if the initial angular momentum of the rotating radical lies nearly parallel to a principal axis, the very narrow range of tangential velocities predicted by this model must be convoluted with a J = 0 recoil velocity distribution to achieve a good result. The model relies on measuring the kinetic energy release when the halogenated precursor is photodissociated via a repulsive excited state but does not include any adjustable parameters. Even when different conformers of the photolytic precursor are populated, weighting the prediction by a thermal conformer population gives an accurate prediction for the relative velocity vectors of the fragments from the highly rotationally excited radical intermediates. (C) 2015 AIP Publishing LLC.
机译:我们提出了一个模型,该模型可以准确预测由于旋转激发自由基的单分子分解而产生的产品的净速度分布。自由基是在无碰撞条件下由卤化前体以光解方式产生的,因此它们不处于旋转状态的热分布中。准确性取决于自由基与内能之外的可忽略的高能屏障分离。我们使用先前的速度图成像和交叉的激光分子束散射实验测试模型预测,该实验通过溴化前体光解生成旋转激发的CD2CD2OH和C3H6OH自由基;这些自由基中的一些然后分别进一步离解为CD2CD2 + OH和C3H6 + OH。我们首先以接近其平衡几何的形式对具有高振动和旋转能量的这些自由基的旋转轨迹进行建模,然后通过将旋转过程中的每个点投影到过渡状态(继续在该几何上的旋转动力学)进行建模。这使我们能够通过计算过渡态CD2CD2 / C3H6和OH片段的切线速度来准确预测自由基的后续解离所产生的反冲速度。该模型还给出了解离碎片的速度矢量和初始自由基的速度矢量之间的角度分布的预测。这些结果用于生成与先前测得的解离片段的飞行时间分布的拟合。适合度极高。结果证明了考虑旋转自由基的角速度矢量进动的重要性。我们还表明,如果旋转自由基的初始角动量几乎平行于主轴,则必须用J = 0的反冲速度分布对由该模型预测的非常窄的切向速度范围进行卷积以获得良好的结果。该模型依靠测量当卤化的前体通过排斥激发态进行光解离时的动能释放,但不包括任何可调整的参数。即使当填充了光解前体的不同构象体时,通过热构象体总体对预测值进行加权,也可以准确预测来自高度旋转激发的自由基中间体的片段的相对速度矢量。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号