首页> 外文期刊>The Journal of Chemical Physics >A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water
【24h】

A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water

机译:基于混合量子经典近似的溶液中丙二醛分子内质子转移反应的分子动力学研究。一,质子在水中的转移反应

获取原文
获取原文并翻译 | 示例
           

摘要

In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfer process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps~(-1), which is about 2.5 times faster than that in vacuum, 0.27 ps~(-1). This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.
机译:为了研究溶液中的质子转移反应,已经基于我们先前提出的反应系统运动的量子运动方程式进行了混合量子-经典分子动力学计算[A。 Yamada和S. Okazaki,J。Chem。物理128,044507(2008)]。应用表面跳变法来描述作用在溶剂经典自由度上的力。在我们的一系列研究中,已经详细分析了量子和溶剂对溶液中反应动力学的影响。在这里,我们报告我们丙二醛在水中的分子内质子转移的混合量子经典分子动力学计算。可以通过求解运动方程来描述热活化质子转移过程,即,在反应物状态下的振动激发,随后转变为产物状态和在产物状态下的振动弛豫以及隧穿反应。当然,也包括零点能量。已经将水中的量子模拟与完全经典的模拟和真空中的波包计算进行了比较。计算得出的水中量子反应速率为0.70 ps〜(-1),比真空下的0.27 ps〜(-1)快约2.5倍。这表明溶剂水促进了反应。此外,量子计算产生的反应速率比完全经典计算快约2倍,这表明量子效应也提高了反应速率。在混合量子-经典计算中,来自三种反应机理的贡献,即隧穿,热活化和势垒消失反应的贡献为33:46:21。这清楚地表明隧道效应在反应中很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号