首页> 外文期刊>The Journal of Chemical Physics >Efficient calculation of many-body induced electrostatics in molecular systems
【24h】

Efficient calculation of many-body induced electrostatics in molecular systems

机译:分子系统中多体感应静电的有效计算

获取原文
获取原文并翻译 | 示例
           

摘要

Potential energy functions including many-body polarization are in widespread use in simulations of aqueous and biological systems, metal-organics, molecular clusters, and other systems where electronically induced redistribution of charge among local atomic sites is of importance. The polarization interactions, treated here via the methods of Thole and Applequist, while long-ranged, can be computed for moderate-sized periodic systems with extremely high accuracy by extending Ewald summation to the induced fields as demonstrated by Nymand, Sala, and others. These full Ewald polarization calculations, however, are expensive and often limited to very small systems, particularly in Monte Carlo simulations, which may require energy evaluation over several hundred-thousand configurations. For such situations, it shall be shown that sufficiently accurate computation of the polarization energy can be produced in a fraction of the central processing unit (CPU) time by neglecting the long-range extension to the induced fields while applying the long-range treatments of Ewald or Wolf to the static fields; these methods, denoted Ewald E-Static and Wolf E-Static (WES), respectively, provide an effective means to obtain polarization energies for intermediate and large systems including those with several thousand polarizable sites in a fraction of the CPU time. Furthermore, we shall demonstrate a means to optimize the damping for WES calculations via extrapolation from smaller trial systems.
机译:包括多体极化的势能函数已广泛用于水和生物系统,金属有机物,分子簇和其他系统中,其中电子诱导的局部原子位点之间的电荷重分布非常重要。如Nymand,Sala等人所示,通过将Ewald求和扩展到感应场,可以通过Thole和Applequist方法对极化相互作用进行长距离处理,从而对中等大小的周期性系统进行极高的精确度计算。但是,这些完整的Ewald极化计算非常昂贵,并且通常限于非常小的系统,尤其是在蒙特卡洛模拟中,这可能需要对数十万种配置进行能量评估。在这种情况下,应该表明,通过在对光场进行长距离处理时忽略对感应场的长距离扩展,可以在中央处理器(CPU)的一小部分时间内产生足够准确的极化能量计算。埃瓦尔德或沃尔夫到静态领域;这些分别表示为Ewald E-Static和Wolf E-Static(WES)的方法提供了一种有效的方法,可为中型和大型系统(包括具有数千个可极化站点的系统)在CPU时间中获得极化能量。此外,我们将展示一种通过较小的试验系统外推来优化WES计算阻尼的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号