首页> 外文期刊>The Journal of Chemical Physics >Structural stability of proteins in aqueous and nonpolar environments
【24h】

Structural stability of proteins in aqueous and nonpolar environments

机译:蛋白质在水和非极性环境中的结构稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

A protein folds into its native structure with the α-helix andor β-sheet in aqueous solution under the physiological condition. The relative content of these secondary structures largely varies from protein to protein. However, such structural variability is not exhibited in nonaqueous environment. For example, there is a strong trend that alcohol induces a protein to form α-helices, and many of the membrane proteins within the lipid bilayer consists of α-helices. Here we investigate the structural stability of proteins in aqueous and nonpolar environments using our recently developed free-energy function F (Λ - TS)(k _BT _0) Λ(k _BT _0) - Sk _B (T _0 298 K and the absolute temperature T is set at T _0) which is based on statistical thermodynamics. Λ(k _BT _0) and Sk _B are the energetic and entropic components, respectively, and k _B is Boltzmanns constant. A smaller value of the positive quantity, -S, represents higher efficiency of the backbone and side-chain packing promoted by the entropic effect arising from the translational displacement of solvent molecules or the CH _2, CH _3, and CH groups which constitute nonpolar chains of lipid molecules. As for Λ, in aqueous solution, a transition to a more compact structure of a protein accompanies the break of protein-solvent hydrogen bonds: As the number of donors and acceptors buried without protein intramolecular hydrogen bonding increases, Λ becomes higher. In nonpolar solvent, lower Λ simply implies more intramolecular hydrogen bonds formed. We find the following. The α-helix and β-sheet are advantageous with respect to -S as well as Λ and to be formed as much as possible. In aqueous solution, the solvent-entropy effect on the structural stability is so strong that the close packing of side chains is dominantly important, and the α-helix and β-sheet contents are judiciously adjusted to accomplish it. In nonpolar solvent, the solvent-entropy effect is substantially weaker than in aqueous solution. Λ is crucial and the α-helix is more stable than the β-sheet in terms of Λ, which develops a tendency that α-helices are exclusively chosen. For a membrane protein, α-helices are stabilized as fundamental structural units for the same reason, but their arrangement is performed through the entropic effect mentioned above.
机译:在生理条件下,水溶液中的α-螺旋和/或β-折叠使蛋白质折叠成其天然结构。这些二级结构的相对含量因蛋白质而异。但是,在非水环境中不会表现出这种结构变异性。例如,存在一种强烈的趋势,即酒精会诱导蛋白质形成α螺旋,而脂质双层中的许多膜蛋白都由α螺旋组成。在这里,我们使用最近开发的自由能函数F(Λ-TS)(k _BT _0)Λ(k _BT _0)-Sk _B(T _0 298 K和绝对温度)研究蛋白质在水和非极性环境中的结构稳定性T基于统计热力学设置为T _0)。 Λ(k _BT _0)和Sk _B分别是能量和熵分量,k _B是玻尔兹曼常数。正值较小的值-S表示由于溶剂分子或构成非极性链的CH _2,CH _3和CH基团的平移位移而产生的熵效应促进了主链和侧链堆积的较高效率脂质分子。关于Λ,在水溶液中,伴随着蛋白质-溶剂氢键的断裂,蛋白质向更致密结构的转变:随着埋藏而没有蛋白质分子内氢键的供体和受体的数量增加,Λ变得更高。在非极性溶剂中,较低的Λ表示形成更多的分子内氢键。我们发现以下内容。 α-螺旋和β-折叠相对于-S以及Λ是有利的,并且要尽可能地形成。在水溶液中,溶剂对结构稳定性的熵效应是如此之强,以致侧链的紧密堆积起着至关重要的作用,并且明智地调整α-螺旋和β-片层的含量来实现。在非极性溶剂中,溶剂熵效应比在水溶液中弱。 Λ是至关重要的,就Λ而言,α螺旋比β折叠更稳定,这形成了仅选择α螺旋的趋势。对于膜蛋白,出于相同的原因,α-螺旋稳定为基本结构单元,但是它们的排列是通过上述的熵效应进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号