...
首页> 外文期刊>The Journal of Chemical Physics >Computing many-body wave functions with guaranteed precision: The first-order Moller-Plesset wave function for the ground state of helium atom
【24h】

Computing many-body wave functions with guaranteed precision: The first-order Moller-Plesset wave function for the ground state of helium atom

机译:以保证的精度计算多体波函数:氦原子基态的一阶Moller-Plesset波函数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schr?dinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Moller-Plesset wave function of a helium atom. The computed second-order Moller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.
机译:我们提出了一种方法,使用针对两个电子波函数的自适应不连续谱元素多分辨率表示来计算原子和分子的精确相关能。由于具有数量维数的频谱元素表示形式的指数存储复杂性,对高精度二维电子(六维)波函数进行蛮力计算是不切实际的。为了克服关键的存储瓶颈,我们利用(1)低阶张量逼近(特别是奇异值分解)来压缩波动函数,以及(2)在波动函数中显式关联R12型项以使库仑电子正则化-哈密顿量的电子奇点。表示了解决薛定?方程所需的所有运算,因此根本不需要重构波动函数的全秩形式。通过计算氦原子的一阶Moller-Plesset波函数,突出了该方法的数值性能。计算得出的二阶Moller-Plesset能量精确到〜2个微hartrees,处于现有的基于原子轨道的一般方法的精度极限。我们的方法没有假定特殊的几何对称性,因此直接应用于分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号