首页> 外文期刊>International Journal of Quantum Chemistry >How Does the Free Complement Wave Function Become Accurate and Exact Finally for the Hydrogen Atom Starting From the Slater and Gaussian Initial Functions and for the Helium Atom on the Cusp Conditions?
【24h】

How Does the Free Complement Wave Function Become Accurate and Exact Finally for the Hydrogen Atom Starting From the Slater and Gaussian Initial Functions and for the Helium Atom on the Cusp Conditions?

机译:对于从Slater和Gauss初始函数开始的氢原子以及在尖锐条件下的氦原子,自由互补波函数如何变得精确且最终精确?

获取原文
获取原文并翻译 | 示例
       

摘要

The free complement (FC) method, or the free iterative-complement-interaction (ICI) method, for generating the exact wave function from an approximate initial wave function has been applied to the hydrogen atom starting from the Slater and Gaussian functions for comparison. The process of improvement was followed by checking the wave function itself and other quantities that have definite exact values. Because the exact wave function is simple in this case, we could make clear analyses for many aspects of the wave function. We examined the energy, the wave function itself, the wave function error, the H-square error, the local energy near the nucleus, and the cusp. Both the Slater and Gaussian functions gave similar convergence rates to the exact function with respect to the order of the FC method, but the number of complement functions at a particular order is three times larger for the Gaussian case than for the Slater case. Although the cusp value of the Gaussian initial function is zero, it grows as the FC calculation proceeds and finally becomes essentially exact at convergence. The same was true for all the quantities studied here, irrespective of the type of the initial wave function. For the helium atom, the cusp conditions including the electron-electron cusp were also examined with the FC wave function calculated before and shown to converge to the exact values.
机译:从Slater和Gaussian函数开始,已将自由补体(FC)方法或自由迭代补体相互作用(ICI)方法从近似初始波函数生成精确的波函数应用于氢原子进行比较。改进过程之后,检查了波动函数本身以及其他具有确定精确值的数量。因为在这种情况下精确的波动函数很简单,所以我们可以对波动函数的许多方面进行清晰的分析。我们检查了能量,波动函数本身,波动函数误差,H平方误差,原子核附近的局部能量以及尖端。就FC方法的阶数而言,Slater函数和高斯函数都为精确函数提供了相似的收敛速度,但是对于高斯情况,互补函数的数量比Slater情况大三倍。尽管高斯初始函数的尖点值为零,但它随着FC计算的进行而增大,最终在收敛时变得基本精确。无论初始波动函数的类型如何,这里研究的所有数量都是如此。对于氦原子,还使用之前计算出的FC波函数检查了包括电子-电子尖峰在内的尖峰条件,并显示收敛于精确值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号