首页> 外文期刊>The Journal of Chemical Physics >Van der Waals interactions between hydrocarbon molecules and zeolites: Periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Moller-Plesset perturbation theory
【24h】

Van der Waals interactions between hydrocarbon molecules and zeolites: Periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Moller-Plesset perturbation theory

机译:碳氢化合物分子与沸石之间的范德华相互作用:从密度泛函理论到随机相位近似和Moller-Plesset微扰理论,在不同理论水平上进行周期性计算

获取原文
获取原文并翻译 | 示例
       

摘要

The adsorption of small alkane molecules in purely siliceous and protonated chabazite has been investigated at different levels of theory: (i) density-functional (DFT) calculations with a gradient-corrected exchange-correlation functional; DFT calculations using the Perdew-Burke- Ernzerhof (PBE) functional with corrections for the missing dispersion forces in the form of C _6R ~6 pair potentials with (ii) C _6 parameters and vdW radii determined by fitting accurate energies for a large molecular data base (PBE-d) or (iii) derived from atoms in a solid calculations; (iv) DFT calculations using a non-local correlation functional constructed such as to account for dispersion forces (vdW-DF); (v) calculations based on the random phase approximation (RPA) combined with the adiabatic-coupling fluctuation-dissipation theorem; and (vi) using Hartree-Fock (HF) calculations together with correlation energies calculated using second-order Moller-Plesset (MP2) perturbation theory. All calculations have been performed for periodic models of the zeolite and using a plane-wave basis and the projector-augmented wave method. The simpler and computationally less demanding approaches (i)-(iv) permit a calculation of the forces acting on the atoms using the Hellmann-Feynman theorem and further a structural optimization of the adsorbate-zeolite complex, while RPA and MP2 calculations can be performed only for a fixed geometry optimized at a lower level of theory. The influence of elevated temperature has been taken into account by averaging the adsorption energies calculated for purely siliceous and protonated chabazite, with weighting factors determined by molecular dynamics calculations with dispersion-corrected forces from DFT. Compared to experiment, the RPA underestimates the adsorption energies by about 5kJ/mol while MP2 leads to an overestimation by about 6 kJ/Mol (averaged over methane, ethane, and propane). The most accurate results have been found for the hybrid RPA-HF method with an average error of less than 2 kJ/mol only, while RPA underestimates the adsorption energies by about 8 kJ/mol on average. MP2 overestimates the adsorption energies slightly, with an average error of 5 kJ/mol. The more approximate and computationally less demanding methods such as the vdW-DF density functional or the C _6R ~6 pair potentials with C _6 parameters from atoms in a solid calculations overestimate the adsorption energies quite strongly. Relatively good agreement with experiment is achieved with the empirical PBEd method with an average error of about 5 kJ/mol.
机译:已经在不同的理论水平上研究了纯硅质质子化菱沸石中小烷烃分子的吸附:(i)具有梯度校正交换相关函数的密度泛函(DFT)计算;使用Perdew-Burke-Ernzerhof(PBE)函数进行DFT计算,并通过(ii)C _6参数和vdW半径校正C -6R〜6对电势形式的缺失色散力,该误差通过拟合大分子数据的准确能量确定在固体计算中衍生自原子的基数(PBE-d)或(iii); (iv)使用非局部相关函数构造DFT计算,以便考虑色散力(vdW-DF); (v)基于随机相位近似(RPA)结合绝热耦合波动耗散定理进行计算; (vi)使用Hartree-Fock(HF)计算以及使用二阶Moller-Plesset(MP2)扰动理论计算的相关能量。已经针对沸石的周期性模型并使用平面波基础和投影仪增强波方法进行了所有计算。较简单且计算要求较低的方法(i)-(iv)允许使用Hellmann-Feynman定理计算作用在原子上的力,并进一步优化吸附剂-沸石配合物的结构,同时可以执行RPA和MP2计算仅适用于在较低理论水平下优化的固定几何。通过对纯硅质和质子化菱沸石计算的吸附能进行平均,已考虑到了高温的影响,加权因子由分子动力学计算确定,并由DFT进行了色散校正。与实验相比,RPA低估了约5kJ / mol的吸附能,而MP2导致高估了约6kJ / Mol(甲烷,乙烷和丙烷的平均值)。对于混合RPA-HF方法,发现最准确的结果,其平均误差仅小于2 kJ / mol,而RPA平均低估了约8 kJ / mol的吸附能。 MP2稍微高估了吸附能,平均误差为5 kJ / mol。在固体计算中,诸如vdW-DF密度泛函或具有C _6参数的C _6R〜6对电势等更近似且计算要求较低的方法相当强烈地高估了吸附能。用经验性PBEd方法获得的实验结果相对较好,平均误差约为5 kJ / mol。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号