首页> 外文学位 >van der Waals Corrected Density Functional Theory Calculations on Zeolitic Imidazolate Frameworks.
【24h】

van der Waals Corrected Density Functional Theory Calculations on Zeolitic Imidazolate Frameworks.

机译:van der Waals对沸石咪唑盐骨架的密度泛函理论校正。

获取原文
获取原文并翻译 | 示例

摘要

The van der Waals force is ubiquitous in nature, however, first principles calculations of this interaction for large systems, i.e., around 1000 atoms, have been performed only recently. In the following are presented results on the application of the van der Waals density functional (vdW-DF) to gas adsorption and transport in zeolitic imidazolate frameworks (ZIFs). Carbon dioxide and methane binding energies and positions are calculated with the vdW-DF in three distinct binding sites in a series of five rho topology ZIFs. The isostructural set of ZIFs was selected in order to isolate the effect of framework functionalization. Gas molecules are found to bind in locations with high coordination to framework atoms at distances of around 3 A. Contributions to the binding energy from induced polarization and dispersion are quantified in order to elucidate the origins of strong CO2 adsorption and selectivity over CH4. The dispersion energy is found to dominate the interactions, however, CO2 adsorption is also enhanced by electrostatic interactions with asymmetrically functionalized linkers. Steric constraints for methane molecules, that do not impede carbon dioxide binding, further contribute to selectivity.;Binding energy landscapes for CO2 and CH4 are calculated using classical force fields for the same set of rho ZIFs and several other ZIFs that differ in functionalization and topology. Quantities extracted from these landscapes are used to explain the effect of framework topology on gas adsorption at low and high pressure as well as how the positions of adsorbed gas molecules evolve as a function of pressure. Materials with large surface areas have greater gas uptake at high pressure, while smaller pores, which are associated with stronger binding, adsorb more gas at low pressure.;Finally, the effect of framework flexibility on CO2 transport through the double 8-ring channel of ZIF-97 is investigated with computationally intensive climbing-nudged elastic band calculations utilizing two versions of the vdW-DF. The results are largely consistent between the two versions and show a small decrease (12-33 meV) in the transport barrier with flexibility.;In addition, several versions of the vdW-DF are applied to the Kr dimer, graphite, and H2, Al, and Li on graphene. For these systems experimental binding energies and separations are available, such that they provide useful benchmarks for the accuracy of the vdW-DF type methods. The vdW-DF2 and vdW-optB88 methods are found to both produce accurate results for dispersion dominated binding. Analyses of mixed ionic-dispersion binding highlight the importance of further study of these functionals at short-range.
机译:范德华力本质上是普遍存在的,但是,直到最近才对大型系统(即大约1000个原子)进行这种相互作用的第一性原理计算。下面给出范德华密度泛函(vdW-DF)在沸石咪唑化物骨架(ZIFs)中的气体吸附和运输中的应用结果。用vdW-DF在一系列五个rho拓扑ZIF中的三个不同的结合位点计算二氧化碳和甲烷的结合能和位置。选择ZIF的同构集以隔离框架功能化的影响。发现气体分子在与骨架原子高度配位的位置以约3 A的距离结合。量化了感应极化和分散对结合能的贡献,以阐明强烈的CO2吸附和对CH4的选择性。发现分散能支配了相互作用,但是,通过与不对称官能化的连接基的静电相互作用,CO 2的吸附也得以增强。甲烷分子的立体约束不会阻碍二氧化碳的结合,进一步提高了选择性。使用同一组rho ZIF和几种其他在功能和拓扑上不同的ZIF的经典力场,计算了CO2和CH4的结合能态。从这些景观中提取的数量用于解释框架拓扑结构在低压和高压下对气体吸附的影响,以及吸附气体分子的位置如何随压力变化。具有较大表面积的材料在高压下会吸收更多的气体,而与较强的结合力相关的较小的孔则在低压下会吸收更多的气体。最后,骨架柔韧性对CO2通过碳氢化合物双8环通道传输的影响使用两个版本的vdW-DF,通过计算密集的攀爬弹力带计算研究了ZIF-97。两种版本的结果在很大程度上是一致的,并且显示了具有挠性的传输势垒略有下降(12-33 meV)。;此外,将几种版本的vdW-DF应用于Kr二聚体,石墨和H2,铝和锂在石墨烯上。对于这些系统,可以使用实验的结合能和分离能,从而为vdW-DF型方法的准确性提供了有用的基准。发现vdW-DF2和vdW-optB88方法都能为分散主导的结合产生准确的结果。混合离子分散键合的分析突出了在短距离内进一步研究这些功能的重要性。

著录项

  • 作者

    Ray, Keith George.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Physics General.;Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号