首页> 外文期刊>The Journal of Chemical Physics >Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: The importance of level crossings
【24h】

Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: The importance of level crossings

机译:固态核磁共振中魔角旋转下交叉效应动态核极化的理论:平交的重要性

获取原文
获取原文并翻译 | 示例
           

摘要

We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T_(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.
机译:由于魔角旋转(MAS)下核磁共振中的交叉效应,我们提出了动态核极化(DNP)的理论计算。使用三自旋模型(两个电子和一个原子核),对于具有大g各向异性的电子自旋,具有MAS的交叉效应DNP可以看作是一系列自旋跃迁,其能级交叉避免了不同的绝热程度。如果电子自旋晶格弛豫时间T_(1e)相对于MAS旋转周期较大,则交叉效应可能发生为两个单独的事件:(i)施加的微波使一个电子自旋部分饱和,作为一个电子自旋共振(当两个ESR频率之差越过核频率时,ESR)频率越过微波频率,并且(ii)翻转所有三个自旋,如果两个电子自旋具有不同的极化,则极化会转移到核自旋。此外,两个ESR频率相等的绝热能级交叉点可用于维持ESR线上的不均匀饱和度。我们基于绝热过渡的Landau-Zener理论以及基于时间的三自旋系统演化的数值量子力学计算,给出了分析结果。这些计算提供了对交叉效应DNP依赖于各种实验参数的洞察力,这些参数包括MAS频率,微波场强度,自旋弛豫速率,超精细和电子-电子偶极耦合强度以及双自由基掺杂剂的性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号