首页> 外文期刊>The Journal of Chemical Physics >Efficient time-dependent density functional theory approximations for hybrid density functionals: Analytical gradients and parallelization
【24h】

Efficient time-dependent density functional theory approximations for hybrid density functionals: Analytical gradients and parallelization

机译:混合密度泛函的高效时变密度泛函理论近似值:分析梯度和并行化

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFTTDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The parallelization efficiency for the Coulomb terms can be somewhat smaller (speedup ~15-25 for 30 processors), but their contribution to the total calculation time is small. Thus, the parallel program completes a Becke3-Lee-Yang-Parr energy and gradient calculation on the Ag-TB2-helicate in less than 4 h on 30 processors. We also present the necessary extension of the Lagrangian formalism, which enables the calculation of the TDDFT excited state properties in the frozen-core approximation. The algorithms described in this work are implemented into the ORCA electronic structure system.
机译:在本文中,我们提出了Tamm-Dancoff逼近(TDA)中混合密度泛函的时间依赖密度泛函理论(TDDFT)的有效逼近。对于TDDFTTDA激发能和解析梯度的计算,我们将恒等分辨率(RI-J)算法用于库仑项的计算,以及最近推出的“球体交换链”(COSX)算法用于对库仑项的计算。交换条款。结果表明,对于烃基链而言,与传统方法相比,对于扩展基集,RIJCOSX逼近可将速度提高2个数量级。绝热跃迁能,激发态结构和振动频率的准确性通过配置相互作用单和混合TDDFT / TDA方法(使用各种基集)在25个分子的一组27个激发态上进行评估。与标准值相比,跃迁能量的典型误差约为0.01 eV。与基态结果相似,激发态平衡几何形状的结合距离与规范值的差异小于0.3 pm,结合角的差异小于0.5°。计算出的激发态法向坐标位移的典型误差约为0.01,计算出的激发态振动频率的相对误差小于1%。因此,与与TDDFT方法和基本集截断的近似性质有关的误差相比,RIJCOSX近似引入的误差微不足道。对于Ag-TB2-螺旋(156个原子,2732个基函数)的TDDFT / TDA能量和梯度计算,证明COSX算法几乎完美并行化(30个处理器的加速率约为26-29)。交换相关项也很好地并行化(30个处理器的加速比约为27-29)。 Z向量方程的解表明在30个处理器上加速了〜24。库仑项的并行化效率可能会稍低(30个处理器的加速比约为15-25),但它们对总计算时间的贡献很小。因此,并行程序在不到30小时的4小时内就完成了在Ag-TB2-螺旋上的Becke3-Lee-Yang-Parr能量和梯度计算。我们还提出了拉格朗日形式主义的必要扩展,这使得能够在冻结核近似中计算TDDFT激发态性质。这项工作中描述的算法已实现到ORCA电子结构系统中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号