...
首页> 外文期刊>The Journal of Chemical Physics >Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy
【24h】

Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

机译:富烯双键光致异构化的量子动力学研究:分子内振动能的重新分布和激发能的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.
机译:富马烯的双键光致异构化已经通过使用多构型时变哈特里方法的量子动力学计算进行了研究。 Fulvene是一个基于激发态衰减机制知识开发光学控制策略的测试案例。衰减发生在几百飞秒的时间范围内,势能表面位于基态和激发态之间的圆锥形交点处。无活性的衰变与光异构化之间的竞争取决于衰变过程中进入的接缝区域。动力学在完整的活动空间自洽场计算参数化的四维模型表面上进行,该模型捕获了接缝的主要特征(接缝的能量和轨迹以及相关的分支空间矢量)。由5-25 fs持续时间和1.85-4 eV激发能量的单个激光脉冲引发的波包传播显示了光动力学的前150 fs的主要特征。最初,激发能被传递到键拉伸模式,该键拉伸模式将波包引向接缝,从而引发了反应物的再生。振动能从键的拉伸流向扭转模式后,开始光致异构化。在我们的传播中,分子内能量重新分布(IVR)沿键拉伸模式加速了更高的多余能量。因此,无反应的衰变和异构化之间的竞争取决于键拉伸和扭转坐标之间的IVR比率,而IVR的比率又取决于激发能。这些结果为未来光学控制策略的发展奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号