...
首页> 外文期刊>The Journal of Chemical Physics >Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics
【24h】

Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics

机译:固体电介质中动态核极化的量子力学理论

获取原文
获取原文并翻译 | 示例
           

摘要

Microwave driven dynamic nuclear polarization (DNP) is a process in which the large polarization present in an electron spin reservoir is transferred to nuclei, thereby enhancing NMR signal intensities. In solid dielectrics there are three mechanisms that mediate this transfer-the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Historically these mechanisms have been discussed theoretically using thermodynamic parameters and average spin interactions. However, the SE and the CE can also be modeled quantum mechanically with a system consisting of a small number of spins and the results provide a foundation for the calculations involving TM. In the case of the SE, a single electron-nuclear spin pair is sufficient to explain the polarization mechanism, while the CE requires participation of two electrons and a nuclear spin, and can be used to understand the improved DNP enhancements observed using biradical polarizing agents. Calculations establish the relations among the electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) frequencies and the microwave irradiation frequency that must be satisfied for polarization transfer via the SE or the CE. In particular, if, 0I, where and are the homogeneous linewidth and inhomogeneous breadth of the EPR spectrum, respectively, we verify that the SE occurs when M0S0I, where M, 0S and 0I are, respectively, the microwave, and the EPR and NMR frequencies. Alternatively, when 0I, the CE dominates the polarization transfer. This two-electron process is optimized when 0S1-0S2=0I and M~0S1 or 0S2, where 0S1 and 0S2 are the EPR Larmor frequencies of the two electrons. Using these matching conditions, we calculate the evolution of the density operator from electron Zeeman order to nuclear Zeeman order for both the SE and the CE. The results provide insights into the influence of the microwave irradiation field, the external magnetic field, and the electron-electron and electron-nuclear interactions on DNP enhancements.
机译:微波驱动的动态核极化(DNP)是一个过程,其中电子自旋储层中存在的大极化转移到核中,从而增强NMR信号强度。在固体电介质中,存在三种介导这种转移的机理-固体效应(SE),交叉效应(CE)和热混合(TM)。历史上,已经使用热力学参数和平均自旋相互作用对这些机理进行了理论讨论。但是,也可以使用由少量自旋组成的系统对SE和CE进行机械建模,其结果为涉及TM的计算提供了基础。在SE的情况下,单个电子-核自旋对足以解释极化机理,而CE则需要两个电子和一个核自旋参与,并且可以用来理解使用双自由基极化剂观察到的改善的DNP增强。 。计算建立了电子顺磁共振(EPR)和核磁共振(NMR)频率以及通过SE或CE进行极化转移必须满足的微波辐射频率之间的关系。特别是,如果0I(其中和分别是EPR谱的均一线宽和不均匀宽度),我们验证当M0S0I(其中M,0S和0I分别是微波)以及EPR和NMR时发生SE频率。或者,当0I时,CE主导极化传输。当0S1-0S2 = 0I且M〜0S1或0S2时,该双电子过程得到了优化,其中0S1和0S2是两个电子的EPR拉莫尔频率。使用这些匹配条件,我们计算了SE和CE的密度算符从电子塞曼阶到核塞曼阶的演化。结果为深入了解微波辐射场,外部磁场以及电子-电子和电子-核相互作用对DNP增强的影响提供了见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号