...
首页> 外文期刊>The Journal of Chemical Physics >Water coordination structures and the excess free energy of the liquid
【24h】

Water coordination structures and the excess free energy of the liquid

机译:水配位结构和液体的过量自由能

获取原文
获取原文并翻译 | 示例
           

摘要

We assess the contribution of each coordination state to the hydration free energy of a distinguished water molecule, the solute water. We define a coordination sphere, the inner-shell, and separate the hydration free energy into packing, outer-shell, and local, solute-specific (chemical) contributions. The coordination state is defined by the number of solvent water molecules within the coordination sphere. The packing term accounts for the free energy of creating a solute-free coordination sphere in the liquid. The outer-shell contribution accounts for the interaction of the solute with the fluid outside the coordination sphere and it is accurately described by a Gaussian model of hydration for coordination radii greater than the minimum of the oxygen-oxygen pair-correlation function: theory helps identify the length scale to parse chemical contributions from bulk, nonspecific contributions. The chemical contribution is recast as a sum over coordination states. The nth term in this sum is given by the probability pn of observing n water molecules inside the coordination sphere in the absence of the solute water times a factor accounting for the free energy, W_n, of forming an n-water cluster around the solute. The pn factors thus reflect the intrinsic properties of the solvent while W_n accounts for the interaction between the solute and inner-shell solvent ligands. W_e monitor the chemical contribution to the hydration free energy by progressively adding solvent ligands to the inner-shell and find that four-water molecules are needed to fully account for the chemical term. For a chemically meaningful coordination radius, we find that W_4 ≈ W_1 and thus the interaction contribution is principally accounted for by the free energy for forming a one-water cluster, and intrinsic occupancy factors alone account for over half of the chemical contribution. Our study emphasizes the need to acknowledge the intrinsic solvent properties in interpreting the hydration structure of any solute, with particular care in cases where the solute-solvent interaction strength is similar to that between the solvent molecules.
机译:我们评估了每个配位状态对杰出水分子溶质水的水合自由能的贡献。我们定义了一个协调球体,即内壳,并将水合自由能分为堆积,外壳和局部的,特定于溶质的(化学)贡献。配位状态由配位球内的溶剂水分子数定义。堆积术语解释了在液体中创建无溶质配位球的自由能。外层贡献解释了溶质与配位球外流体的相互作用,并通过高斯水合作用模型精确描述了配位半径大于氧-氧对相关函数最小值的理论:理论有助于确定从大量非特定贡献中解析化学贡献的长度范围。化学贡献被重新映射为配位态的总和。该总和中的第n项由在没有溶质水的情况下观察配位球内的n个水分子的概率pn乘以考虑了在溶质周围形成n水团簇的自由能W_n的系数。因此,pn因子反映了溶剂的固有性质,而W_n则说明了溶质与内壳溶剂配体之间的相互作用。通过逐步向内壳中添加溶剂配体来监测化学对水合自由能的贡献,并发现需要四个水分子来完全解释化学术语。对于化学意义上的配位半径,我们发现W_4≈W_1,因此相互作用的贡献主要由形成一水簇的自由能所占,仅固有占有因子占化学贡献的一半以上。我们的研究强调在解释任何溶质的水合结构时需要承认其固有的溶剂特性,尤其是在溶质与溶剂之间的相互作用强度与溶剂分子之间的相互作用强度相似的情况下,应格外小心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号