首页> 外文期刊>The Journal of Chemical Physics >Ring polymer molecular dynamics beyond the linear response regime:Excess electron injection and trapping in liquids
【24h】

Ring polymer molecular dynamics beyond the linear response regime:Excess electron injection and trapping in liquids

机译:超出线性响应范围的环状聚合物分子动力学:液体中过多的电子注入和捕获

获取原文
获取原文并翻译 | 示例
           

摘要

Ring polymer molecular dynamics (RPMD) is used to directly simulate the injection and relaxationof excess electrons into supercritical helium fluid and ambient liquid water. A method formodulating the initial energy of the excess electron in the RPMD model is presented and used tostudy both low-energy (cold) and high-energy (hot) electron injections. For cold injection into bothsolvents, the RPMD model recovers electronically adiabatic dynamics with the excess electron in itsground state, whereas for hot electron injection, the model predicts slower relaxation dynamicsassociated with electronic transitions between solvent cavities. The analysis of solvent dynamicsduring electron localization reveals the formation of an outgoing solvent compression wave inhelium that travels for over 2 nm and the delayed formation of water solvation shells on thetimescale of 300 fs. Various system-size effects that are intrinsic to the simulation of excess electroninjection are discussed. Comparison of the RPMD simulations with previous mixedquantum-classical dynamics simulations finds general agreement for both the mechanisms andtimescales for electron localization, although the electron localization dynamics in the RPMD modelis essentially completed within 400 fs in helium and 150 fs in water.
机译:环状聚合物分子动力学(RPMD)用于直接模拟多余电子注入和释放到超临界氦流体和环境液态水中。提出了一种在RPMD模型中调制过量电子的初始能量的方法,该方法用于研究低能(冷)和高能(热)电子注入。对于冷注入两种溶剂,RPMD模型可恢复电子绝热动力学,其中多余的电子处于基态,而对于热电子注入,该模型预测较慢的弛豫动力学与溶剂腔之间的电子跃迁相关。对电子局部化过程中溶剂动力学的分析表明,形成的溶剂压缩波氦气的传播时间超过2 nm,并且在300 fs的时间尺度上延迟了水溶剂化壳的形成。讨论了过量电子注入的模拟所固有的各种系统大小效应。将RPMD模拟与以前的混合量子经典动力学模拟进行比较,发现电子本地化的机理和时标基本一致,尽管RPMD模型中的电子本地化动力学基本上在氦气中400 fs和水中150 fs内完成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号