首页> 外文期刊>The Journal of Chemical Physics >An energy-conserving two-temperature model of radiation damage In single-component and binary Lennard-Jones crystals
【24h】

An energy-conserving two-temperature model of radiation damage In single-component and binary Lennard-Jones crystals

机译:单组分和二元Lennard-Jones晶体中辐射损伤的节能双温模型

获取原文
获取原文并翻译 | 示例
           

摘要

Two-temperature models are used to represent the interaction between atoms and free electronsduring thermal transients such as radiation damage, laser heating, and cascade simulations. In thispaper, we introduce an energy-conserving version of an inhomogeneous finite reservoirtwo-temperature model using a Langevin thermostat to communicate energy between the electronicand atomic subsystems.This energy-conserving modification allows the inhomogeneoustwo-temperature model to be used for longer and larger simulations and simulations of small energyphenomena, without introducing nonphysical energy fluctuations that may affect simulation results.We test this model on the annealing of Frenkel defects. We find that Frenkel defect annealing islargely indifferent to the electronic subsystem, unless the electronic subsystem is very tightlycoupled to the atomic subsystem.We also consider radiation damage due to local deposition of heatin two idealized systems.We first consider radiation damage in a large face-centered-cubicLennard-Jones.(LJ)single-component crystal that readily recrystallizes. Second, we considerradiation damage in a large binary glass-forming LJ crystal that retains permanent damage. We findthat the electronic subsystem parameters can influence the way heat is transported through thesystem and have a significant impact on the number of defects after the heat deposition event. Wealso find that the two idealized systems have different responses to the electronic subsystem. Thesingle-component Li system anneals most rapidly with an intermediate electron-ion coupling and ahigh electronic thermal conductivity. If sufficiently damaged, the binary glass-forming LI systemretains the least permanent damage with both a high electron-ion coupling and a high electronicthermal conductivity. In general, we find that the presence of an electronic gas can affect short andlong term material annealing.
机译:两种温度模型用于表示热瞬态(例如辐射损伤,激光加热和级联模拟)过程中原子与自由电子之间的相互作用。在本文中,我们介绍了使用Langevin恒温器在电子子系统和原子子系统之间传递能量的非均质有限储层二温模型的节能版本,此节能修改允许将非均质二温模型用于更长或更大型的仿真并在不引入可能影响模拟结果的非物理能量波动的情况下对小能量现象进行仿真。我们在Frenkel缺陷的退火中测试了该模型。我们发现,除非电子子系统与原子子系统紧密耦合,否则Frenkel缺陷退火在很大程度上与电子子系统无关。我们还考虑了在两个理想化系统中由于局部热量沉积而造成的辐射破坏。中心立方立方的伦纳德·琼斯(LJ)单组分晶体,易于重结晶。其次,我们考虑了保留永久性损伤的大型二元玻璃形成LJ晶体的辐射损伤。我们发现,电子子系统参数可以影响热量通过系统的传输方式,并且对热沉积事件后的缺陷数量有重大影响。我们还发现,两个理想化的系统对电子子系统的响应不同。单组分锂体系以中间电子-离子耦合和高电子热导率退火最快。如果被充分破坏,则形成二元玻璃的LI系统将同时具有高电子-离子耦合和高电子热导率,从而使永久损坏最少。通常,我们发现电子气体的存在会影响短期和长期的材料退火。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号