首页> 外文期刊>The Journal of Chemical Physics >On the formation mechanism of the 'pancake' decahedron gold nanoparticie
【24h】

On the formation mechanism of the 'pancake' decahedron gold nanoparticie

机译:关于“薄煎饼”十二面体金纳米粒子的形成机理

获取原文
获取原文并翻译 | 示例
           

摘要

We have studied the thermodynamic and kinetic growth mechanisms behind the formation of the "pancake" decahedron (D_h) gold nanoparticie using computer simulation.Free energy calculations showed that the full pancake morphology is thermodynamically unstable across all the nanoparticie size ranges studied.However,from observations of growth simulations we discovered that a kinetic transport mechanism plays a significant contributing role in the formation process through a transfer of adatoms from the top and bottom (111) D_h faces to the side (100) faces.More specifically we observed how diffusing adatoms on the (111) face are at times "pulled" off this face and into the (111)-(100) edge of the D_h,forcing a row of (100) side atoms into a (1X5) hexagonal reconstruction.Subsequently,this row of atoms was observed to buckle and then deconstruct forcing adatoms out onto the (100) side face completing the transfer.This transport mechanism is shown to be the main kinetic driving force behind the growth of the thermodynamicaily unstable pancake D_h nanoparticie.The observed mechanism has implications for the nonequilibrium morphologies of nanoparticles involving a (100)-(111) surface boundary,especially for systems with surface reconstructions which increase the density of the surface.
机译:我们已经使用计算机模拟研究了形成“煎饼”十面体(D_h)金纳米颗粒背后的热力学和动力学增长机理。自由能计算表明,在所有研究的纳米颗粒尺寸范围内,整个煎饼形貌在热力学上都是不稳定的。通过观察生长模拟,我们发现动力学传输机制通过将原子从顶部和底部(111)D_h面转移到侧面(100)面转移了原子形成过程,从而发挥了重要作用。 (111)面上的“原子”有时会从该面上“拉出”并进入D_h的(111)-(100)边缘,迫使一行(100)侧原子进行(1X5)六角形重构。观察到一排原子弯曲然后解构,迫使原子迁移到(100)侧面以完成转移。该传输机制被证明是背后的主要动力学驱动力观察到的机理对涉及(100)-(111)表面边界的纳米粒子的非平衡形态具有影响,特别是对于具有表面重构的系统而言,该系统增加了表面密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号