...
首页> 外文期刊>The Journal of Chemical Physics >Low variance energy estimators for systems of quantum Drude oscillators: Treating harmonic path integrals with large separations of time scales
【24h】

Low variance energy estimators for systems of quantum Drude oscillators: Treating harmonic path integrals with large separations of time scales

机译:量子Drude振荡器系统的低方差能量估计器:时间间隔较大时处理谐波路径积分

获取原文
获取原文并翻译 | 示例
           

摘要

In the effort to develop atomistic models capable of accurately describing nanoscale systems with complex interfaces, it has become clear that simple treatments with rigid charge distributions and dispersion coefficients selected to generate bulk properties are insufficient to predict important physical properties. The quantum Drude oscillator model, a system of one-electron pseudoatoms whose "pseudoelectrons" are harmonically bound to their respective "pseudonuclei," is capable of treating many-body polarization and dispersion interactions in molecular systems on an equal footing due to the ability of the pseudoatoms to mimic the long-range interactions that characterize real materials. Using imaginary time path integration, the Drude oscillator model can, in principle, be solved in computer operation counts that scale linearly with the number of atoms in the system. In practice, however, standard expressions for the energy and pressure, including the commonly used virial estimator, have extremely large variances that require untenably long simulation times to generate converged averages. In this paper, low-variance estimators for the internal energy are derived, in which the large zero-point energy of the oscillators does not contribute to the variance. The new estimators are applicable to any system of harmonic oscillators coupled to one another (or to the environment) via an arbitrary set of anharmonic interactions. The variance of the new estimators is found to be much smaller than standard estimators in three example problems, a one-dimensional anharmonic oscillator and quantum Drude models of the xenon dimer and solid (fcc) xenon, respectively, yielding 2-3 orders of magnitude improvement in computational efficiency. (c) 2007 American Institute of Physics.
机译:在努力开发能够精确描述具有复杂界面的纳米级系统的原子模型的过程中,很明显,具有刚性电荷分布和选择为产生整体性质的弥散系数的简单处理方法不足以预测重要的物理性质。量子Drude振荡器模型是一个单电子伪原子的系统,其“伪电子”与它们各自的“伪核”谐和地结合,由于具有以下功能,因此能够在分子基础上平等地处理多体极化和色散相互作用。伪原子模仿真实材料的远距离相互作用。使用虚构的时间路径积分,原则上,可以用计算机运算的计数来求解Drude振荡器模型,该计数与系统中原子数成线性比例。但是,实际上,能量和压力的标准表达式(包括常用的病毒估计量)具有极大的方差,需要耗时不长的模拟时间才能生成收敛的平均值。本文推导了内部能量的低方差估计量,其中振荡器的大零点能量对方差没有贡献。新的估计器适用于通过任意一组非谐波相互作用而彼此耦合(或耦合至环境)的任何谐波振荡器系统。在三个示例问题中,发现新估计量的方差比标准估计量小得多,这三个问题分别是氙二聚体和固态(fcc)氙的一维非谐振荡器和量子Drude模型,产生2-3个数量级。计算效率的提高。 (c)2007年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号