首页> 外文期刊>The Journal of Chemical Physics >Self-consistent embedding theory for locally correlated configuration interaction wave functions in condensed matter
【24h】

Self-consistent embedding theory for locally correlated configuration interaction wave functions in condensed matter

机译:凝聚态局部相关构型相互作用波函数的自洽嵌入理论

获取原文
获取原文并翻译 | 示例
           

摘要

We present new developments on a density-based embedding strategy for the electronic structure of localized feature in periodic, metallic systems [see T. Kluner , J. Chem. Phys. 116, 42 (2002), and references therein]. The total system is decomposed into an embedded cluster and a background, where the background density is regarded as fixed. Its effect on the embedded cluster is modeled as a one-electron potential derived from density functional theory. We first discuss details on the evaluation of the various contributions to the embedding potential and provide a strategy to incorporate the use of ultrasoft pseudopotentials in a consistent fashion. The embedding potential is obtained self-consistently with respect to both the total and embedded cluster densities in the embedding region, within the framework of a frozen background density. A strategy for accomplishing this self-consistency in a numerically stable manner is presented. Finally, we demonstrate how dynamical correlation effects can be treated within this embedding framework via the multireference singles and doubles configuration interaction method. Two applications of the embedding theory are presented. The first example considers a Cu dimer embedded in the (111) surface of Cu, where we explore the effects of different models for the kinetic energy potential. We find that the embedded Cu density is reasonably well-described using simple models for the kinetic energy. The second, more challenging example involves the adsorption of Co on the (111) surface of Cu, which has been probed experimentally with scanning tunneling microscopy [H. C. Manoharan , Nature (London) 403, 512 (2000)]. In contrast to Kohn-Sham density functional theory, our embedding approach predicts the correct spin-compensated ground state. (c) 2006 American Institute of Physics.
机译:我们提出了基于密度的嵌入策略的新进展,该策略用于周期性金属系统中局部特征的电子结构[请参阅T. Kluner,J。Chem。物理[第116、42页(2002),及其中的参考文献]。整个系统被分解为一个嵌入式群集和一个背景,其中背景密度被认为是固定的。它对嵌入式簇的影响被建模为源自密度泛函理论的单电子势。我们首先讨论有关对嵌入潜力的各种贡献的评估的详细信息,并提供一种以一致的方式合并使用超软伪势的策略。在冻结背景密度的框架内,相对于嵌入区域中的总簇密度和嵌入簇密度,可以自洽地获得嵌入潜力。提出了一种以数值稳定的方式实现这种自洽的策略。最后,我们演示了如何通过多引用单打和双打配置交互方法在此嵌入框架内处理动态相关效应。提出了嵌入理论的两个应用。第一个示例考虑嵌入在Cu(111)表面中的Cu二聚体,我们在其中探索了不同模型对动能的影响。我们发现使用简单的动能模型可以很好地描述嵌入的Cu密度。第二个更具挑战性的示例涉及Co在Cu(111)表面上的吸附,已通过扫描隧道显微镜[H. C. Manoharan,Nature(London)403,512(2000)。与Kohn-Sham密度泛函理论相反,我们的嵌入方法可预测正确的自旋补偿基态。 (c)2006年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号