首页> 外文学位 >Density Functional Theory Embedding for Correlated Wavefunctions.
【24h】

Density Functional Theory Embedding for Correlated Wavefunctions.

机译:嵌入相关波函数的密度泛函理论。

获取原文
获取原文并翻译 | 示例

摘要

Methods that exploit the intrinsic locality of molecular interactions show significant promise in making tractable the electronic structure calculation of large-scale systems. In particular, embedded density functional theory (e-DFT) offers a formally exact approach to electronic structure calculations in which the interactions between subsystems are evaluated in terms of their electronic density. In the following dissertation, methodological advances of embedded density functional theory are described, numerically tested, and applied to real chemical systems.;First, we describe an e-DFT protocol in which the non-additive kinetic energy component of the embedding potential is treated exactly. Then, we present a general implementation of the exact calculation of the non-additive kinetic potential (NAKP) and apply it to molecular systems. We demonstrate that the implementation using the exact NAKP is in excellent agreement with reference Kohn-Sham calculations, whereas the approximate functionals lead to qualitative failures in the calculated energies and equilibrium structures.;Next, we introduce density-embedding techniques to enable the accurate and stable calculation of correlated wavefunction (CW) in complex environments. Embedding potentials calculated using e-DFT introduce the effect of the environment on a subsystem for CW calculations (WFT-in-DFT). We demonstrate that WFT-in-DFT calculations are in good agreement with CW calculations performed on the full complex.;We significantly improve the numerics of the algorithm by enforcing orthogonality between subsystems by introduction of a projection operator. Utilizing the projection-based embedding scheme, we rigorously analyze the sources of error in quantum embedding calculations in which an active subsystem is treated using CWs, and the remainder using density functional theory. We show that the embedding potential felt by the electrons in the active subsystem makes only a small contribution to the error of the method, whereas the error in the nonadditive exchange-correlation energy dominates. We develop an algorithm which corrects this term and demonstrate the accuracy of this corrected embedding scheme.
机译:利用分子相互作用的固有局部性的方法在使大规模系统的电子结构计算变得易于处理方面显示出巨大的希望。特别是,嵌入式密度泛函理论(e-DFT)为电子结构计算提供了一种形式上精确的方法,其中子系统之间的相互作用根据其电子密度进行评估。在下面的论文中,描述了嵌入式密度泛函理论的方法学进展,对其进行了数值测试,并将其应用于实际的化学系统。首先,我们描述了一种e-DFT协议,其中处理了嵌入势的非加法动能分量究竟。然后,我们提出精确计算非加成动力学势(NAKP)的一般方法,并将其应用于分子系统。我们证明使用精确NAKP的实现与Kohn-Sham参考计算非常吻合,而近似功能会导致计算出的能量和平衡结构发生定性破坏。;接下来,我们引入密度嵌入技术以实现精确和精确的计算。在复杂环境中稳定地计算相关波函数(CW)。使用e-DFT计算的嵌入势将环境对子系统进行CW计算(WFT-in-DFT)的影响。我们证明了WFT-in-DFT计算与对整个复杂系统执行的CW计算非常吻合。我们通过引入投影算子来增强子系统之间的正交性,从而显着提高了算法的数值。利用基于投影的嵌入方案,我们在量子嵌入计算中严格分析了误差源,在该量子嵌入计算中,使用CW来处理有源子系统,其余的使用密度泛函理论。我们表明,电子在有源子系统中所感觉到的嵌入电势对方法的误差贡献很小,而在非相加交换相关能量中的误差占主导地位。我们开发了一种算法,可以纠正此术语,并证明此纠正后的嵌入方案的准确性。

著录项

  • 作者

    Goodpaster, Jason D.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Chemical engineering.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号