首页> 外文期刊>The Journal of Chemical Physics >Implementation of a symplectic multiple-time-step molecular dynamics algorithm, based on the united-residue mesoscopic potential energy function
【24h】

Implementation of a symplectic multiple-time-step molecular dynamics algorithm, based on the united-residue mesoscopic potential energy function

机译:基于联合残基介观势能函数的辛多时间步分子动力学算法的实现

获取原文
获取原文并翻译 | 示例
           

摘要

A symplectic multiple-time-step (MTS) algorithm has been developed for the united-residue (UNRES) force field. In this algorithm, the slow-varying forces (which contain most of the long-range interactions and are, therefore, expensive to compute) are integrated with a larger time step, termed the basic time step, and the fast-varying forces are integrated with a shorter time step, which is an integral fraction of the basic time step. Based on the split operator formalism, the equations of motion were derived. Separation of the fast- and slow-varying forces leads to stable molecular dynamics with longer time steps. The algorithms were tested with the Ala(10) polypeptide chain and two versions of the UNRES force field: the current one in which the energy components accounting for the energetics of side-chain rotamers (U-rot) can lead to numerically unstable forces and a modified one in which the the present U-rot was replaced by a numerically stable expression which, at present, is parametrized only for polyalanine chains. With the modified UNRES potential, stable trajectories were obtained even when extending the basic time step to 15 fs and, with the original UNRES potentials, the basic time step is 1 fs. An adaptive multiple-time-step (A-MTS) algorithm is proposed to handle instabilities in the forces; in this method, the number of substeps in the basic time step varies depending on the change of the magnitude of the acceleration. With this algorithm, the basic time step is 1 fs but the number of substeps and, consequently, the computational cost are reduced with respect to the MTS algorithm. The use of the UNRES mesoscopic energy function and the algorithms derived in this work enables one to increase the simulation time period by several orders of magnitude compared to conventional atomic-resolution molecular dynamics approaches and, consequently, such an approach appears applicable to simulating protein-folding pathways, protein functional dynamics in a real molecular environment, and dynamical molecular recognition processes. (c) 2006 American Institute of Physics.
机译:针对联合残余物(UNRES)力场,开发了辛的多时步(MTS)算法。在该算法中,将慢变力(包含大多数远程交互作用,因此计算起来很昂贵)与较大的时间步长(称为基本时间步长)集成,并且对快速变化的力进行了积分时间步长较短,这是基本时间步长的整数部分。基于分裂算子形式,推导了运动方程。快速和慢速力的分离导致较长时间步长的稳定分子动力学。该算法在Ala(10)多肽链和UNRES力场的两个版本中进行了测试:当前的算法中,占侧链旋转异构体(U-rot)能量的能量分量会导致数值不稳定的力,以及一种修饰的修饰物,其中当前的U-rot被数值稳定的表达式代替,目前,该表达式仅对聚丙氨酸链进行参数设置。使用修改后的UNRES电位,即使将基本时间步长扩展到15 fs,也可以获得稳定的轨迹;而使用原始UNRES电位,基本时间步长为1 fs。提出了一种自适应多时间步长(A-MTS)算法来处理力的不稳定性。在该方法中,基本时间步中的子步数根据加速度大小的变化而变化。使用该算法,基本时间步长为1 fs,但是相对于MTS算法,子步数减少了,因此降低了计算成本。与传统的原子分辨率分子动力学方法相比,使用UNRES介观能量函数和该算法得出的算法可使模拟时间段增加几个数量级,因此,这种方法似乎适用于模拟蛋白质-折叠途径,真实分子环境中的蛋白质功能动力学以及动态分子识别过程。 (c)2006年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号