...
首页> 外文期刊>The Journal of Chemical Physics >Computation of methodology-independent ionic solvation free energies from molecular simulations. I. The electrostatic potential in molecular liquids
【24h】

Computation of methodology-independent ionic solvation free energies from molecular simulations. I. The electrostatic potential in molecular liquids

机译:通过分子模拟计算方法学无关的离子溶剂化自由能的计算。一,分子液体中的静电势

获取原文
获取原文并翻译 | 示例

摘要

The computation of ionic solvation free energies from atomistic simulations is a surprisingly difficult problem that has found no satisfactory solution for more than 15 years. The reason is that the charging free energies evaluated from such simulations are affected by very large errors. One of these is related to the choice of a specific convention for summing up the contributions of solvent charges to the electrostatic potential in the ionic cavity, namely, on the basis of point charges within entire solvent molecules (M scheme) or on the basis of individual point charges (P scheme). The use of an inappropriate convention may lead to a charge-independent offset in the calculated potential, which depends on the details of the summation scheme, on the quadrupole-moment trace of the solvent molecule, and on the approximate form used to represent electrostatic interactions in the system. However, whether the M or P scheme (if any) represents the appropriate convention is still a matter of on-going debate. The goal of the present article is to settle this long-standing controversy by carefully analyzing (both analytically and numerically) the properties of the electrostatic potential in molecular liquids (and inside cavities within them). Restricting the discussion to real liquids of "spherical" solvent molecules (represented by a classical solvent model with a single van der Waals interaction site), it is concluded that (i) for Coulombic (or straight-cutoff truncated) electrostatic interactions, the M scheme is the appropriate way of calculating the electrostatic potential; (ii) for non-Coulombic interactions deriving from a continuously differentiable function, both M and P schemes generally deliver an incorrect result (for which an analytical correction must be applied); and (iii) finite-temperature effects, including intermolecular orientation correlations and a preferential orientational structure in the neighborhood of a liquid-vacuum interface, must be taken into account. Applications of these results to the computation methodology-independent ionic solvation free energies from molecular simulations will be the scope of a forthcoming article. (c) 2006 American Institute of Physics.
机译:通过原子模拟计算离子溶剂化自由能是一个非常困难的问题,超过15年没有找到令人满意的解决方案。原因是从这样的模拟评估的自由充电能量受到很大误差的影响。其中之一与特定惯例的选择有关,以总结溶剂电荷对离子腔中静电势的贡献,即基于整个溶剂分子中的点电荷(M方案)或基于个人积分收费(P方案)。使用不合适的约定可能会导致计算出的电势与电荷无关的偏移,这取决于求和方案的详细信息,溶剂分子的四极矩迹线以及用于表示静电相互作用的近似形式在系统中。但是,M或P方案(如果有)是否代表适当的惯例仍是一个持续争论的问题。本文的目的是通过仔细(分析和数值分析)分子液体(及其内部空腔)中的静电势特性来解决这一长期存在的争议。将讨论限于“球形”溶剂分子的实际液体(由具有单个范德华相互作用位点的经典溶剂模型表示),可以得出以下结论:(i)对于库仑(或截断的直截断)静电相互作用,M方案是计算静电势的合适方法; (ii)对于源自可连续微分函数的非库伦相互作用,M和P方案通常都会提供错误的结果(必须对此进行分析校正); (iii)必须考虑有限的温度效应,包括分子间取向相关性和液-真空界面附近的优先取向结构。将这些结果应用于分子模拟中与计算方法无关的离子溶剂化自由能将是即将发表的文章的范围。 (c)2006年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号