首页> 外文期刊>The Journal of Chemical Physics >General explanation of geometric phase effects in reactive systems:Unwinding the nuclear wave function using simple topology
【24h】

General explanation of geometric phase effects in reactive systems:Unwinding the nuclear wave function using simple topology

机译:反应堆系统中几何相位效应的一般解释:使用简单拓扑展开核波函数

获取原文
获取原文并翻译 | 示例
           

摘要

We describe a simple topological approach which was used recently to explain geometric phase (GP) effects in the hydrogen-exchange reaction [Juanes-Marcos et al.,Science 309,1227 (2005)].The approach is general and applies to any reactive system in which the nuclear wave function encircles a conical intersection (CI) and is confined to one adiabatic surface.The only numerical work required is to add and subtract nuclear wave functions computed with normal and GP boundary conditions.This is equivalent to unwinding the nuclear wave function onto a double cover space,which separates out two components whose relative sign is changed by the GP.By referring to earlier work on the Aharanov-Bohm effect,we show that these two components contain all the Feynman paths that follow,respectively,an even and an odd number of loops around the CI.These two classes of path are essentially decoupled in the Feynman sum,because they belong to different homotopy classes (meaning that they cannot be continuously deformed into one another).Care must be taken in classifying the two types of path when the system can enter the encirclement region from several different start points.This applies to bimolecular reactions with identical reagents and products,for which our approach allows a symmetry argument developed by Mead [J.Chem.Phys.72,3839 (1980)] to be generalized from nonencircling to encircling systems.The approach can be extended in order to unwind the wave function completely onto a higher cover space,thus separating contributions from individual winding numbers.The scattering boundary conditions are ultimately what allow the wave function to be unwound from the CI,and hence a bound state wave function cannot be unwound.The GP therefore has a much stronger effect on the latter than on the wave function of a reactive system.
机译:我们描述了一种简单的拓扑方法,该方法最近用于解释氢交换反应中的几何相(GP)效应[Juanes-Marcos等,科学309,1227(2005)]。该方法是通用的,适用于任何反应性核波函数围绕一个圆锥形交叉点(CI)并被限制在一个绝热表面中的系统。唯一需要进行的数值工作是对在法向和GP边界条件下计算出的核波函数进行加减法运算。将波函数移到双覆盖空间上,该空间将GP更改了相对符号的两个分量分开。通过参考较早的Aharanov-Bohm效应研究,我们表明这两个分量分别包含所有遵循的费曼路径, CI周围的偶数和奇数个循环。这两类路径在费曼和中本质上是解耦的,因为它们属于不同的同伦类(这意味着它们不能连续)当系统可以从几个不同的起点进入包围区域时,必须小心区分这两种类型的路径。这适用于具有相同试剂和产物的双分子反应,我们的方法允许对称Mead [J.Chem.Phys.72,3839(1980)]提出的论点可以从非环绕系统推广到环绕系统。可以扩展该方法,以将波函数完全展开到更高的覆盖空间上,从而将贡献与散射的边界条件最终是允许波函数从CI展开的原因,因此束缚状态波函数不能被展开。因此,GP对后者的影响比对波函数的影响大得多。反应系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号