首页> 外文期刊>The Journal of Chemical Physics >Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials
【24h】

Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials

机译:用于直接确定具有连续或不连续电势的系统的界面张力的测试区域模拟方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A novel test-area (TA) technique for the direct simulation of the interfacial tension of systems interacting through arbitrary intermolecular potentials is presented in this paper. The most commonly used method invokes the mechanical relation for the interfacial tension in terms of the tangential and normal components of the pressure tensor relative to the interface (the relation of Kirkwood and Buff [J. Chem. Phys. 17, 338 (1949)]). For particles interacting through discontinuous intermolecular potentials (e.g., hard-core fluids) this involves the determination of delta functions which are impractical to evaluate, particularly in the case of nonspherical molecules. By contrast we employ a thermodynamic route to determine the surface tension from a free-energy perturbation due to a test change in the surface area. There are important distinctions between our test-area approach and the computation of a free-energy difference of two (or more) systems with different interfacial areas (the method of Bennett [J. Comput. Phys. 22, 245 (1976)]), which can also be used to determine the surface tension. In order to demonstrate the adequacy of the method, the surface tension computed from test-area Monte Carlo (TAMC) simulations are compared with the data obtained with other techniques (e.g., mechanical and free-energy differences) for the vapor-liquid interface of Lennard-Jones and square-well fluids; the latter corresponds to a discontinuous potential which is difficult to treat with standard methods. Our thermodynamic test-area approach offers advantages over existing techniques of computational efficiency, ease of implementation, and generality. The TA method can easily be implemented within either Monte Carlo (TAMC) or molecular-dynamics (TAMD) algorithms for different types of interfaces (vapor-liquid, liquid-liquid, fluid-solid, etc.) of pure systems and mixtures consisting of complex polyatomic molecules. (c) 2005 American Institute of Physics.
机译:本文提出了一种新颖的测试区域(TA)技术,用于直接模拟通过任意分子间电势相互作用的系统的界面张力。最常用的方法是根据压力张量相对于界面的切线和法向分量来调用界面张力的机械关系(Kirkwood和Buff的关系[J. Chem。Phys。17,338(1949)] )。对于通过不连续的分子间电势相互作用的颗粒(例如,硬核流体),这涉及确定δ函数的确定,这对于评估是不切实际的,尤其是在非球形分子的情况下。相比之下,由于表面积的测试变化,我们采用热力学方法来确定自由能扰动的表面张力。我们的测试区域方法与具有不同界面区域的两个(或多个)系统的自由能差的计算之间存在重要区别(Bennett的方法[J. Comput。Phys。22,245(1976)]) ,也可以用来确定表面张力。为了证明该方法的正确性,将通过测试区域蒙特卡罗(TAMC)模拟计算出的表面张力与通过其他技术(例如,机械能和自由能差)获得的气液界面的数据进行了比较。 Lennard-Jones和方井流体;后者对应于不连续的电位,很难用标准方法治疗。与现有技术相比,我们的热力学试验区方法具有计算效率高,易于实施和通用性强的优势。 TA方法可以很容易地在Monte Carlo(TAMC)或分子动力学(TAMD)算法中实现,用于纯系统的不同类型界面(汽-液,液-液,液-固等),以及复杂的多原子分子。 (c)2005年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号