...
首页> 外文期刊>The Journal of Chemical Physics >Probing the barrier for CH2CHCO - CH2CH+CO by the velocity map imaging method
【24h】

Probing the barrier for CH2CHCO - CH2CH+CO by the velocity map imaging method

机译:用速度图成像方法探测CH2CHCO-> CH2CH + CO的势垒

获取原文
获取原文并翻译 | 示例
           

摘要

This work determines the dissociation barrier height for CH2CHCO -> CH2CH+CO using two-dimensional product velocity map imaging. The CH2CHCO radical is prepared under collision-free conditions from C-Cl bond fission in the photodissociation of acryloyl chloride at 235 nm. The nascent CH2CHCO radicals that do not dissociate to CH2CH+CO, about 73% of all the radicals produced, are detected using 157-nm photoionization. The Cl(P-2(3/2)) and Cl(P-2(1/2)) atomic fragments, momentum matched to both the stable and unstable radicals, are detected state selectively by resonance-enhanced multiphoton ionization at 235 nm. By comparing the total translational energy release distribution P(E-T) derived from the measured recoil velocities of the Cl atoms with that derived from the momentum-matched radical cophotofragments which do not dissociate, the energy threshold at which the CH2CHCO radicals begin to dissociate is determined. Based on this energy threshold and conservation of energy, and using calculated C-Cl bond energies for the precursor to produce CH2CHCO or CH2CHCO, respectively, we have determined the forward dissociation barriers for the radical to dissociate to vinyl+CO. The experimentally determined barrier for CH2CHCO -> CH2CH+CO is 21 +/- 2 kcal mol(-1), and the computed energy difference between the CH2CHCO and the CH2CHCO forms of the radical gives the corresponding barrier for CH2CHCO -> CH2CH+CO to be 23 +/- 2 kcal mol(-1). This experimental determination is compared with predictions from electronic structure methods, including coupled-cluster, density-functional, and composite Gaussian-3-based methods. The comparison shows that density-functional theory predicts too low an energy for the CH2CHCO radical, and thus too high a barrier energy, whereas both the Gaussian-3 and the coupled-cluster methods yield predictions in good agreement with experiment. The experiment also shows that acryloyl chloride can be used as a photolytic precursor at 235 nm of thermodynamically stable CH2CHCO radicals, most with an internal energy distribution ranging from approximate to 3 to approximate to 21 kcal mol(-1). We discuss the results with respect to the prior work on the O(P-3)+propargyl reaction and the analogous O(P-3)+allyl system. (C) 2005 American Institute of Physics.
机译:这项工作使用二维产物速度图成像确定CH2CHCO-> CH2CH + CO的解离势垒高度。 CH2CHCO自由基是在无碰撞条件下由丙烯酰氯在235 nm的光解中的C-Cl键裂变制备的。使用157 nm光电离可以检测到未分解为CH2CH + CO的新生CH2CHCO自由基,约占所产生自由基的73%。通过在235 nm共振增强的多光子电离选择性检测状态为Cl(P-2(3/2))和Cl(P-2(1/2))原子碎片的动量与稳定和不稳定自由基均匹配的状态。通过比较从测得的Cl原子的反冲速度得出的总平移能量释放分布P(ET)与从动量匹配的自由基共分裂得到的平移能量释放分布P(ET),可以确定CH2CHCO自由基开始解离的能量阈值。基于该能量阈值和能量守恒,并分别使用计算出的前体分别生成CH2CHCO或CH2CHCO的C-Cl键能,我们确定了自由基离解为乙烯基+ CO的正解离势垒。实验确定的CH2CHCO-> CH2CH + CO的势垒为21 +/- 2 kcal mol(-1),CH2CHCO和自由基的CH2CHCO形式之间的计算能量差给出了CH2CHCO-> CH2CH + CO的相应势垒为23 +/- 2 kcal mol(-1)。将该实验结果与电子结构方法的预测结果进行比较,这些方法包括耦合聚类,密度泛函和基于高斯3的复合方法。比较表明,密度泛函理论预测CH2CHCO自由基的能量太低,因此势垒能量太高,而Gaussian-3方法和耦合簇方法的预测结果都与实验吻合。实验还表明,丙烯酰氯可用作热力学稳定的CH2CHCO自由基在235 nm处的光解前体,大多数内部能量分布范围从大约3到大约21 kcal mol(-1)。我们讨论有关O(P-3)+炔丙基反应和类似O(P-3)+烯丙基系统的现有工作的结果。 (C)2005美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号