首页> 外文期刊>The Journal of Chemical Physics >Multiphonon vibrational relaxation in liquids: Should it lead to an exponential-gap law?
【24h】

Multiphonon vibrational relaxation in liquids: Should it lead to an exponential-gap law?

机译:液体中的多声子振动弛豫:是否应导致指数间隙定律?

获取原文
获取原文并翻译 | 示例
           

摘要

The profound differences between solids and liquids notwithstanding, high-frequency vibrational energy relaxation in liquids seems to be well described by assuming that the excess energy is being transferred into discrete overtones of some fundamental intermolecular vibrations-precisely the way it is in crystalline solids. In a solid-state context, this kind of analysis can be used to justify the observation that relaxation rates fall off exponentially with the energy being transferred. Liquids, however, have a substantial degree of disorder, causing their relevant intermolecular spectra to have correspondingly diffuse band edges and large bandwidths. It is therefore not at all obvious what should become of this exponential-gap-law phenomenology. We show in this paper how near exponential-gap-law behavior can still be derived for vibrational energy relaxation in liquids. To do so, we take advantage of the simple dynamics that the high-frequency relaxation has when it is launched from an individual instantaneous configuration. Interestingly, the physically relevant region turns out not to be true asymptotic limit of our formalism, but for realistic liquid parameters the behavior in the physical regime differs only slightly from an exact exponential-gap law and is strikingly independent of the details of the intermolecular spectra. (C) 2004 American Institute of Physics.
机译:尽管固体和液体之间存在着巨大的差异,但液体中的高频振动能量弛豫似乎可以通过假设多余的能量转移到某些基本分子间振动的离散泛音中来很好地描述,准确地说就是在结晶固体中。在固态环境中,这种分析可用于证明观察到松弛率随能量转移呈指数下降的观点。然而,液体具有很大程度的无序性,导致其相关的分子间光谱具有相应的扩散带边缘和大带宽。因此,这种指数间隙定律现象学应该变成什么样子,这一点也不明显。我们在本文中展示了如何仍然可以通过近似的间隙定律行为来导出液体中的振动能量松弛。为此,我们利用了高频弛豫从单个瞬时配置启动时所具有的简单动力学。有趣的是,与物理相关的区域并不是我们形式主义的真正渐近极限,但是对于现实的液体参数,物理状态下的行为仅与精确的指数间隙定律略有不同,并且与分子间光谱的细节无关。 。 (C)2004年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号