首页> 外文期刊>Crop & Pasture Science >Soil phosphorus-crop response calibration relationships and criteria for oilseeds, grain legumes and summer cereal crops grown in Australia. (Special Issue: Making better fertiliser decisions for cropping systems in Australia.)
【24h】

Soil phosphorus-crop response calibration relationships and criteria for oilseeds, grain legumes and summer cereal crops grown in Australia. (Special Issue: Making better fertiliser decisions for cropping systems in Australia.)

机译:澳大利亚种植的油料种子,豆类和夏季谷物作物的土壤磷-作物响应校准关系和标准。 (特刊:为澳大利亚的种植系统制定更好的肥料决策。)

获取原文
获取原文并翻译 | 示例
       

摘要

Australian cropping systems are dominated by winter cereals; however, grain legumes, oilseeds and summer cereals play an important role as break crops. Inputs of phosphorus (P) fertiliser account for a significant proportion of farm expenditure on crop nutrition, so effective fertiliser-use guidelines are essential. A national database (BFDC National Database) of field experiments examining yield responses to P fertiliser application has been established. This paper reports the results of interrogating that database using a web application (BFDC Interrogator) to develop calibration relationships between soil P test (0-10 cm depth; Colwell NaHCO3 extraction) and relative grain yield. Relationships have been developed for all available data for each crop species, as well as for subsets of those data derived by filtering processes based on experiment quality, presence of abiotic or biotic stressors, P fertiliser placement strategy and subsurface P status. The available dataset contains >730 entries but is dominated by data for lupin (Lupinus angustifolius; 62% of all P experiments) from the south-west of Western Australia. The number of treatment series able to be analysed for other crop species was quite small (<50-60 treatment series) and available data were sometimes from geographic regions or soil types no longer reflective of current production. There is a need for research to improve information on P fertiliser use for key species of grain legumes [faba bean (Vicia faba), lentil (Lens culinaris), chickpea (Cicer arietinum)], oilseeds [canola (Brassica napus), soybean (Glycine max)] and summer cereals [sorghum (Sorghum bicolor), maize (Zea mays)] in soils and farming systems reflecting current production. Interrogations highlighted the importance of quantifying subsurface P reserves to predict P fertiliser response, with consistently higher 0-10 cm soil test values required to achieve 90% maximum yield (CV90) when subsurface P was low (<5 mg P/kg). This was recorded for lupin, canola and wheat (Triticum aestivum). Crops grown on soils with subsurface P >5 mg/kg consistently produced higher relative yields than expected on the basis of a 0-10 cm soil test. The lupin dataset illustrated the impact of improving crop yield potentials (through more effective P-fertiliser placement) on critical soil test values. The higher yield potentials arising from placement of P-fertiliser bands deeper in the soil profile resulted in significantly higher CV90 values than for crops grown on the same sites but using less effective (shallower) P placement. This is consistent with deeper bands providing an increased and more accessible volume of profile P enrichment and supports the observation of the importance of crop P supply from soil layers deeper than 0-10 cm. Soil P requirements for different species were benchmarked against values determined for wheat or barley (Hordeum vulgare) grown in the same regions and/or soil types as a way of extrapolating available data for less researched species. This approach suggested most species had CV90 values and ranges similar to winter cereals, with evidence of different soil P requirements in only peanut (Arachis hypogaea - much lower) and field pea (Pisum sativum - slightly higher). Unfortunately, sorghum data were so limited that benchmarking against wheat was inconclusive.
机译:澳大利亚的农作物系统以冬季谷物为主;但是,豆类,油料和夏季谷物在作茬方面起着重要作用。磷(P)肥料的投入占农作物营养支出的很大一部分,因此有效的肥料使用指南至关重要。建立了一个田间试验的国家数据库(BFDC国家数据库),以检查对磷肥的产量响应。本文报告了使用Web应用程序(BFDC Interrogator)查询该数据库以开发土壤P测试(0-10厘米深度; Colwell NaHCO 3 提取)与相对谷物产量之间的校准关系的结果。已经为每种作物物种的所有可用数据以及通过基于实验质量,非生物或生物胁迫源,磷肥放置策略和地下磷状况的过滤过程得出的那些数据的子集建立了关系。可用的数据集包含> 730个条目,但主要来自西澳大利亚州西南部的羽扇豆(羽扇豆angustifolius;所有P实验的62%)数据。可以分析其他农作物种类的处理系列的数量非常少(<50-60个处理系列),可用数据有时来自地理区域或土壤类型,不再反映当前的产量。有必要进行研究以提高有关主要豆科植物豆科植物[蚕豆(Vicia faba),扁豆(Lens culinaris),鹰嘴豆(Cicer arietinum)],油料种子[低芥酸菜子(芥菜),大豆(反映当前产量的土壤和耕作系统中的夏季谷类[高粱(Sorghum bicolor),玉米(Zea mays)]。审讯突显了量化地下P储量以预测P肥料响应的重要性,当地下P低(<5 mg P / kg)时,要达到90%的最大产量(CV90),始终需要较高的0-10 cm土壤测试值。记录了羽扇豆,低芥酸菜子和小麦(Triticum aestivum)。在0至10厘米土壤测试的基础上,在地下P> 5 mg / kg的土壤上生长的农作物始终产生较高的相对产量。羽扇豆数据集说明了提高作物单产潜力(通过更有效的P肥放置)对关键土壤测试值的影响。在土壤剖面中更深的位置放置P肥带会产生更高的单产潜力,从而导致CV90值明显高于在相同地点但使用的有效(较浅)P位种植的作物。这与较深的带相一致,较深的带提供了更多的和更容易获得的剖面P富集量,并支持观察到从0-10厘米以上的土壤层中供应作物P的重要性。以在相同地区和/或土壤类型中生长的小麦或大麦(大麦)的测定值作为基准,以不同物种的土壤磷需求作为基准,以此推断研究较少的物种的可用数据。这种方法表明大多数物种的CV90值和范围与冬季谷物相似,并且仅在花生(花生(Arachis hypogaea-低得多)和豌豆(Pisum sativum-稍高))中有不同的土壤磷需求量的证据。不幸的是,高粱数据非常有限,以至于小麦基准测试尚无定论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号