...
首页> 外文期刊>Talanta: The International Journal of Pure and Applied Analytical Chemistry >Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: Diffusional limitation investigation
【24h】

Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: Diffusional limitation investigation

机译:固定在碳纳米材料上的漆酶降解酚类化合物:扩散极限研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Carbon nanoparticles are promising candidates for enzyme immobilization. We investigated enzyme loading and laccase activity on various carbon nanoparticles, fullerene (C-60), multi-walled carbon nanotubes (MWNTs), oxidized-MWNTs (O-MWNTs), and graphene oxide (GO). The loading capacity was highest for O-MWNTs and lowest for C-60. The activity of laccase on various nanomatrices using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTs) as a substrate decreased in the following order: GO > MWNTs > O-MWNTs > C. We speculated that aggregation of the nanoparticles influenced enzyme loading and activity by reducing the available adsorption space and substrate accessibility. The nanoparticle-immobilized laccase was then used for removal of bisphenol and catechol substrates. Compared to free laccase, the immobilized enzymes had significantly reduced reaction rates. For example, the reaction rate of GO-laccase conjugated with bisphenol or catechol substrates was only 10.28% or 12.33%, respectively, of that of the free enzyme. Considering that there was no obvious structural change observed after enzyme immobilization, nanomatrix-induced diffusional limitation most likely caused the low reaction rates. These results demonstrate that the diffusional limitation induced by the aggregation of carbon nanoparticles cannot be ignored because it can lead to increased reaction times, low efficiency, and high economic costs. Furthermore, this problem is exacerbated when low concentrations of environmental contaminants are used. (C) 2014 Elsevier B.V. All rights reserved.
机译:碳纳米颗粒是酶固定化的有希望的候选者。我们研究了各种碳纳米颗粒,富勒烯(C-60),多壁碳纳米管(MWNT),氧化MWNT(O-MWNTs)和氧化石墨烯(GO)上的酶负载和漆酶活性。 O-MWNT的负载能力最高,而C-60的负载能力最低。以2,2'-叠氮基双(3-乙基苯并噻唑啉-6-磺酸)(ABT)为底物,漆酶在各种纳米基质上的活性按以下顺序降低:GO> MWNTs> O-MWNTs>C。我们推测通过减少可用的吸附空间和底物可及性,纳米颗粒的聚集影响了酶的负载和活性。然后将纳米粒子固定的漆酶用于去除双酚和邻苯二酚的底物。与游离漆酶相比,固定化酶的反应速率大大降低。例如,与双酚或邻苯二酚底物缀合的GO-漆酶的反应率分别仅为游离酶的反应率的10.28%或12.33%。考虑到固定化酶后没有观察到明显的结构变化,纳米基质诱导的扩散限制很可能导致了低反应速率。这些结果表明,由碳纳米颗粒的聚集引起的扩散限制是不容忽视的,因为它可能导致反应时间增加,效率降低和经济成本较高。此外,当使用低浓度的环境污染物时,这个问题更加严重。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号