首页> 外文期刊>Polymer: The International Journal for the Science and Technology of Polymers >Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: Superior dispersion leading to synergistic property enhancements
【24h】

Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: Superior dispersion leading to synergistic property enhancements

机译:固态剪切粉碎制备的纤维素纳米晶体/聚烯烃生物复合材料:优异的分散性,可增强协同性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Cellulose nanocrystals (CNCs), a class of renewable bionanomaterials with excellent mechanical properties, have gained major interest as filler for polymers. However, challenges associated with effective CNC dispersion have hindered the production of composites with desired property enhancements. Here, composites of polypropylene (PP) and low density polyethylene (LDPE) with 5-10 wt% unmodified CNC are produced for the first time via a solventless process. In particular, we employ solid-state shear pulverization (SSSP). Optical and electron microscopy reveals excellent CNC dispersion with strongly suppressed degradation relative to composites made by melt mixing. Effective dispersion leads to major increases in Young's modulus, including a 69% increase in 90/10 wt% LDPE/CNC composites relative to neat LDPE, the highest modulus enhancement ever reported for polyolefin/CNC composites. The composites also exhibit superior creep performance with modest increment in yield strength compared to neat polymer. The LDPE/CNC composites retain elongation at break values that are equal to that of neat polymer while a decrease is observed with PP/CNC composites. The CNC thermal degradation temperature in air is close to that of PP melt processing conditions. We hypothesize that during melt-processing CNCs undergo preferential thermo-oxidative degradation in LDPE and simultaneous degradation in PP. Thus, CNC incorporation results in impaired thermal stability in LDPE and, especially, PP. Care must be taken in selecting the post-SSSP melt processing temperature and residence time in order to suppress degradation. Taking that into account, this study has produced polyolefin/CNC composites with superior dispersion and property enhancements and shown that CNC is an attractive filler for green polymer biocomposites. (C) 2014 Elsevier Ltd. All rights reserved.
机译:纤维素纳米晶体(CNC)是一类具有出色机械性能的可再生生物纳米材料,已作为聚合物的填料引起了广泛的关注。但是,与有效的CNC分散相关的挑战阻碍了具有所需性能增强的复合材料的生产。在此,通过无溶剂工艺首次生产了聚丙烯(PP)和低密度聚乙烯(LDPE)的复合材料,其中复合材料的改性比例为5-10%。特别是,我们采用固态剪切粉碎(SSSP)。光学和电子显微镜显示出优异的CNC分散性,与通过熔融混合制成的复合材料相比,降解得到了明显抑制。有效的分散导致杨氏模量的大幅增加,其中包括90/10 wt%的LDPE / CNC复合材料相对于纯LDPE的69%的增加,这是聚烯烃/ CNC复合材料有史以来最高的模量提高。与纯聚合物相比,该复合材料还具有优异的蠕变性能,屈服强度适度增加。 LDPE / CNC复合材料的断裂伸长率等于纯聚合物的断裂伸长率,而PP / CNC复合材料的断裂伸长率却下降。空气中的CNC热降解温度接近PP熔融加工条件的温度。我们假设在熔融加工过程中,CNC在LDPE中经历优先的热氧化降解,而在PP中同时降解。因此,CNC掺入会损害LDPE,尤其是PP的热稳定性。在选择SSSP后的熔体加工温度和停留时间时必须小心,以抑制降解。考虑到这一点,本研究生产了具有优异分散性和性能增强的聚烯烃/ CNC复合材料,并表明CNC是绿色聚合物生物复合材料的有吸引力的填料。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号