...
首页> 外文期刊>Polymer: The International Journal for the Science and Technology of Polymers >Plasticity/damage coupling in semi-crystalline polymers prior to yielding: Micromechanisms and damage law identification
【24h】

Plasticity/damage coupling in semi-crystalline polymers prior to yielding: Micromechanisms and damage law identification

机译:屈服前半结晶聚合物的塑性/损伤耦合:微力学和破坏定律鉴定

获取原文
获取原文并翻译 | 示例

摘要

This work addresses the question of the intimate coupling of plastic and damaging processes during the deformation of semi-crystalline polymers at small strains. The evolution of the spherulitic structure in the pre-yield strain range under tensile testing is investigated by atomic force microscopy for three semi-crystalline polymers, namely polycaprolactone, poly(1-butene) and polyamide 6. These materials have different spherulite size, crystallinity index and lamella thickness, and different glass transition temperature of the amorphous phase. Strain-induced damage is clearly evidenced through the gradual loss of elastic properties upon cyclic tensile tests, since the early stage of stretching. In parallel, volume strain appears to be about nil up to the yield point for the three polymers. AFM reveals that fragmentation of the crystalline lamellae occurs well before the yield strain at room temperature, starting about the core region of the spherulites and extending towards the periphery, for all polymers. This is claimed as evidence that lamella fragmentation is a basic mechanism of damage without significant cavitation at low strain. An approach of damage modeling is carried out via preliminary assessment of the viscoelastic contribution from low strain dynamic mechanical analysis using a generalized Maxwell model. It is shown that computing the viscoelastic contribution in the strain range up to yielding, in the assumption of linearity, fairly account for the loading-unloading hysteresis of the tensile cycles. A phenomenological plasticity/damage coupling law is established from the elastic modulus drop with increasing plastic strain, both assessed from the "relaxed" tensile cycles. The same kind of law is shown to apply for the three polymers. A physical meaning to the phenomenological law is proposed via a simple model of fiber rupture in single-fiber-reinforced composite.
机译:这项工作解决了在小应变下半结晶聚合物变形过程中塑料与破坏过程紧密耦合的问题。通过原子力显微镜研究了三种半结晶聚合物,即聚己内酯,聚(1-丁烯)和聚酰胺6。在拉伸试验下,屈服应变范围内球状结构的演变。这些材料具有不同的球晶尺寸,结晶度指数和薄层厚度以及非晶相的不同玻璃化转变温度。自拉伸初期以来,通过周期性拉伸试验的弹性逐渐消失,清楚地表明了应变引起的破坏。平行地,直到三种聚合物的屈服点为止,体积应变似乎为零。 AFM揭示,对于所有聚合物,晶体薄片的断裂发生在室温下的屈服应变之前,从球晶的核心区域开始并向外围延伸。据称,这是薄片破裂是损伤的基本机制的证据,在低应变下没有明显的空化现象。损伤建模的方法是通过对使用广义Maxwell模型进行的低应变动态力学分析的粘弹性贡献进行初步评估而进行的。结果表明,在线性假设下,计算直至应变屈服的应变范围内的粘弹性贡献,可以合理地解释拉伸循环的加载和卸载滞后。现象学上的可塑性/损伤耦合定律是根据随塑性应变增加而产生的弹性模量下降而建立的,两者均是根据“松弛”拉伸循环来评估的。三种聚合物均显示出相同的定律。通过简单的单纤维增强复合材料中纤维断裂的模型,对现象学规律提出了物理意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号