...
首页> 外文期刊>Polymer: The International Journal for the Science and Technology of Polymers >Residual stress effect on degradation of polyimide under simulated hypervelocity space debris and atomic oxygen
【24h】

Residual stress effect on degradation of polyimide under simulated hypervelocity space debris and atomic oxygen

机译:残余应力对模拟超高速空间碎片和原子氧降解聚酰亚胺的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Polyimides are used as the outer layer of thermal control insulation blankets covering most of the external spacecraft surfaces that are exposed to space environment.The combined effect of ground simulated hypervelocity space debris impacts and atomic oxygen (AO) on the fracture of polyimide films was studied.A laser-driven flyer system was used to accelerate aluminum flyers to impact velocities of up to 3 km/s.The impacted films were exposed to an RF plasma source,which was used to simulate the effect of AO in the low Earth orbit.Scanning electron microscopy and atomic force microscopy were used to characterize the fracture and surface morphology.When exposed to oxygen RF plasma,the impacted polyimide film revealed a large increase in the erosion rate,the damage being characterized mainly by the formation of new holes.This effect is explained by the formation of residual stresses due to the impact and enhancement of oxygen diffusivity and accumulation.A complementary experiment,in which a stressed polyimide was exposed to RF plasma,supports this model.This study demonstrates a synergistic effect of the space environment components on polymers' degradation,which is essential for understanding the potential hazards of ultrahigh velocity impacts and AO erosion for completing a successful spacecraft mission.
机译:聚酰亚胺用作热控制绝缘毯的外层,覆盖了暴露于太空环境的大多数航天器外表面。研究了地面模拟超高速空间碎片撞击和原子氧(AO)对聚酰亚胺薄膜断裂的综合影响激光驱动的飞行器系统用于加速铝制飞行器,使其撞击速度达到3 km / s。被撞击的胶片暴露于RF等离子源,用于模拟AO在低地球轨道上的作用。用扫描电子显微镜和原子力显微镜来表征断裂和表面形态。当暴露于氧气RF等离子体中时,被冲击的聚酰亚胺膜显示出腐蚀速率的大幅度增加,其破坏的主要特征是形成了新的孔。氧的扩散和积累的影响和增强会导致残余应力的形成,从而解释这种效应。研究表明,空间环境成分对聚合物降解具有协同作用,这对于了解超高速撞击和AO腐蚀对成功完成航天器的潜在危害至关重要。任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号