首页> 外文期刊>Plant physiology >AtKC1 and CIPK23 Synergistically Modulate AKT1-Mediated Low-Potassium Stress Responses in Arabidopsis
【24h】

AtKC1 and CIPK23 Synergistically Modulate AKT1-Mediated Low-Potassium Stress Responses in Arabidopsis

机译:AtKC1和CIPK23协同调节拟南芥中AKT1介导的低钾胁迫响应。

获取原文
获取原文并翻译 | 示例
           

摘要

In Arabidopsis (Arabidopsis thaliana), the Shaker K+ channel AKT1 conducts K+ uptake in root cells, and its activity is regulated by CBL1/9-CIPK23 complexes as well as by the AtKC1 channel subunit. CIPK23 and AtKC1 are both involved in the AKT1-mediated low-K+ (LK) response; however, the relationship between them remains unclear. In this study, we screened suppressors of low-K+ sensitive [lks1 (cipk23)] and isolated the suppressor of lks1 (sls1) mutant, which suppressed the leaf chlorosis phenotype of lks1 under LK conditions. Map-based cloning revealed a point mutation in AtKC1 of sls1 that led to an amino acid substitution (G322D) in the S6 region of AtKC1. The G322D substitution generated a gain-of-function mutation, AtKC1(D), that enhanced K+ uptake capacity and LK tolerance in Arabidopsis. Structural prediction suggested that glycine-322 is highly conserved in K+ channels and may function as the gating hinge of plant Shaker K+ channels. Electrophysiological analyses revealed that, compared with wild-type AtKC1, AtKC1(D) showed enhanced inhibition of AKT1 activity and strongly reduced K+ leakage through AKT1 under LK conditions. In addition, phenotype analysis revealed distinct phenotypes of lks1 and atkc1 mutants in different LK assays, but the lks1 atkc1 double mutant always showed a LK-sensitive phenotype similar to that of akt1. This study revealed a link between CIPK-mediated activation and AtKC1-mediated modification in AKT1 regulation. CIPK23 and AtKC1 exhibit distinct effects; however, they act synergistically and balance K+ uptake/leakage to modulate AKT1-mediated LK responses in Arabidopsis.
机译:在拟南芥(Arabidopsis thaliana)中,摇床K +通道AKT1在根细胞中进行K +吸收,其活性受CBL1 / 9-CIPK23复合物以及AtKC1通道亚基的调节。 CIPK23和AtKC1均参与AKT1介导的低K +(LK)反应。但是,它们之间的关系仍然不清楚。在这项研究中,我们筛选了低K +敏感性[lks1(cipk23)]的抑制剂,并分离了lks1(sls1)突变体的抑制剂,该突变体在LK条件下抑制了lks1的叶绿化表型。基于图的克隆揭示了sls1的AtKC1中的点突变,该突变导致AtKC1的S6区中的氨基酸置换(G322D)。 G322D取代产生了功能获得突变AtKC1(D),该突变增强了拟南芥中K +的吸收能力和LK耐受性。结构预测表明,甘氨酸-322在K +通道中高度保守,并可能充当植物Shaker K +通道的门控铰链。电生理分析表明,与野生型AtKC1相比,AtKC1(D)在AK条件下显示出对AKT1活性的增强抑制作用,并大大降低了通过AKT1的K +泄漏。此外,表型分析显示在不同的LK分析中lks1和atkc1突变体具有不同的表型,但是lks1 atkc1双重突变体始终显示出与akt1相似的LK敏感表型。这项研究揭示了CIPK介导的激活与AtKC1介导的AKT1调节之间的联系。 CIPK23和AtKC1表现出不同的作用。然而,它们协同作用并平衡K +吸收/泄漏以调节拟南芥中AKT1介导的LK反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号