首页> 外文期刊>Physics of plasmas >Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums
【24h】

Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

机译:动态水平仪中辐射烧蚀和冲击压缩驱动目标内爆的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation. (C) 2015 AIP Publishing LLC.
机译:在动态Hohlraum驱动惯性约束聚变(ICF)配置中,目标可能会经历两种不同类型的内爆。一种是由白炽辐射消融驱动的,消融在赤道和两极大致对称。第二个原因是Z捏动态振子产生的辐射冲击,仅在赤道发生。为了获得由辐射消融驱动的对称目标内爆并避免非对称冲击压缩,这是使用动态角度驱动ICF的关键问题。众所周知,当靶标被角质层辐射加热时,被烧蚀的血浆将向外膨胀。休克的转换器等离子体中的压力随材料温度线性变化。但是,被烧蚀的血浆中的烧蚀压力随着大气压辐射温度的3.5次方而变化。因此,随着沸腾温度的升高,消融压力最终将超过冲击压力,并且消融等离子体的膨胀将明显减弱激波传播并使其传播到消融血浆之后降低其速度。因此,为由辐射消融驱动的对称目标内爆提供了更长的持续时间。在本文中,通过改变驱动电流或改变负载参数来对这些过程进行数值研究。仿真结果表明,需要一个临界的水平辐射温度来提供足够高的消融压力以使冲击减速,从而为由辐射消融驱动的对称燃料压缩提供足够长的时间。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号