...
首页> 外文期刊>Physics of plasmas >Forces and moments within layers of driven tearing modes with sheared rotation
【24h】

Forces and moments within layers of driven tearing modes with sheared rotation

机译:带剪切旋转的驱动撕裂模式层内的力和力矩

获取原文
获取原文并翻译 | 示例

摘要

For driven low amplitude tearing modes in a plasma with sheared rotation, forces on tearing layers due to Maxwell and Reynolds stresses are calculated. First moments about the center of the tearing layer, also due to Maxwell and Reynolds stresses, are also calculated. The forces tend to cause the tearing mode to lock to the phase of the driving perturbation, and the moments determine the evolution of the rotation shear within the layer. These forces and moments are calculated for two constant-delta regimes of tearing modes, namely, the viscoresistive (VR) regime and the resistiveinertial (RI) regime, and an ordering in terms of the constant-psi small parameter is an element of similar to delta Delta is introduced, with the velocity shear ordered as similar to is an element of. Here, delta is the layer width and Delta the logarithmic jump in the derivative of the flux function across the layer. The forces and first moments are reported to the lowest nonvanishing order in is an element of. The Reynolds moment is analogous to the effect that can drive zonal flows in other contexts. The treatment of the tearing layers is by means of variational principles using Pade approximants (A. J. Cole and J. M. Finn, Phys. Plasmas 21, 032508 (2014)). The usual result for the Maxwell force without rotation shear is recovered for both regimes. That is, the correction due to velocity shear is small; also, the lowest order contribution to the Reynolds force is zero. In the VR regime, we find no first moments up to second order in the constant-delta parameter. In the RI regime, we find N-m is zero to at least order is an element of(3/2). In the RI regime, the Reynolds moment N-r is found to be of order is an element of(3/2) and is proportional to minus the rotation shear in the layer; it thus tends to damp out any velocity shear across the layer. (C) 2015 AIP Publishing LLC.
机译:对于在具有剪切旋转的等离子体中驱动的低振幅撕裂模式,计算了由于麦克斯韦应力和雷诺应力而在撕裂层上产生的力。还计算了由于麦克斯韦应力和雷诺应力引起的围绕撕裂层中心的第一矩。力倾向于使撕裂模式锁定到驱动扰动的相位,并且力矩决定了层中旋转剪切的演变。这些力和力矩是针对撕裂模式的两个恒定增量状态(即粘滞性(VR)状态和电阻惯性(RI)状态)计算的,以恒定psi小参数表示的排序类似于delta引入了Delta,其速度剪切与的元素类似。在此,delta是层的宽度,而Delta是通量函数在整个层上的导数的对数跳跃。将力和第一力矩报告为最低消失顺序是其中的一个元素。雷诺力矩类似于在其他情况下可以驱动纬向流动的效应。撕裂层的处理是通过使用Pade近似值的变分原理进行的(A.J.Cole和J.M.Finn,Phys.Plasmas 21,032508(2014))。在两种情况下都可以得到没有旋转剪切力的麦克斯韦力的通常结果。也就是说,由于速度剪切引起的校正很小;同样,雷诺力的最低阶贡献为零。在VR体制中,我们在恒定增量参数中找不到直到第二阶的第一矩。在RI体制中,我们发现N-m为零,至少是(3/2)的元素。在RI模式下,发现雷诺矩N-r是(3/2)的元素,并且与负的层中的旋转剪切力成正比;因此,它趋于抑制层上的所有速度剪切。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号