...
首页> 外文期刊>Physics of plasmas >The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
【24h】

The importance of electrothermal terms in Ohm's law for magnetized spherical implosions

机译:电热项在欧姆定律中对磁化球形内爆的重要性

获取原文
获取原文并翻译 | 示例
           

摘要

The magnetohydrodynamics (MHD) of magnetic-field compression in laser-driven spherical targets is considered. Magnetic-field evolution is cast in terms of an effective fluid velocity, a convective term resulting from resistivity gradients, a resistive diffusion term, and a source term. Effective velocity is the sum of fluid velocity, drift velocity, and heat-flux velocity, given by electron heat flux divided by electron enthalpy density, which has two components: the perpendicular or Nernst velocity and the cross-field velocity. The Nernst velocity compresses the magnetic field as the heat front moves into gas. The cross-field velocity leads to dynamo generation of an azimuthal magnetic field. It is proposed that the heat-flux velocity should be flux limited using a "Nernst" flux limiter independent of the thermal flux limiter but should not exceed it. The addition of the MHD routines to the 1D, Lagrangian hydrocode LILAC and the Eulerian version of the 2D hydrocode DRACO is described, and the codes are used to model a magnetized spherical compression on the OMEGA laser. Thermal flux limiting at a shock front is found to cause unphysical electron temperature gradients that lead to large, unphysical magnetic fields caused by the resistivity gradient, so thermal flux limiting in the gas is removed. The Nernst term reduces the benefits of magnetization in inertial fusion. A Nernst flux limiter <= 0.12 is required in the gas in order to agree with measured neutron yield and increases in the neutron-averaged ion temperature caused by magnetization. This corresponds to preventing the Nernst velocity from exceeding the shock velocity, which prevents significant decoupling of the magnetic field and gas compression. (C) 2015 AIP Publishing LLC.
机译:考虑了激光驱动球形靶中磁场压缩的磁流体动力学(MHD)。根据有效流体速度,由电阻率梯度产生的对流项,电阻扩散项和源项来投射磁场。有效速度是流体速度,漂移速度和热通量速度的总和,由电子热通量除以电子焓密度得到,它具有两个分量:垂直或能斯特速度和交叉场速度。当热锋移入气体时,能斯特速度会压缩磁场。交叉场速度导致产生方位角磁场的发电机。建议使用独立于热通量限制器的“能斯特”通量限制器来限制热通量速度,但不应超过该通量。描述了将MHD例程添加到1D拉格朗日水码LILAC和2D水码DRACO的欧拉版本中,并将这些代码用于在OMEGA激光器上建模磁化球形压缩。发现在冲击前沿的热通量限制会引起非自然的电子温度梯度,从而导致由电阻率梯度引起的大的非物理磁场,因此气体中的热通量限制被消除。能斯特项降低了惯性聚变中磁化的好处。气体中需要能斯特通量限制器<= 0.12,以与测得的中子收率和由磁化引起的中子平均离子温度的升高相一致。这对应于防止能斯特速度超过冲击速度,从而防止磁场与气体压缩的显着去耦。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号