首页> 外文期刊>Physics of plasmas >Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front
【24h】

Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front

机译:间接和直接驱动平面实验对消融前沿水动力不稳定性的研究进展

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experiments performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. The foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil. (C) 2014 AIP Publishing LLC.
机译:在惯性约束聚变中,了解和减轻流体动力不稳定性和燃料混合物是实现点火的关键要素。国家点火装置上的低温间接驱动内爆已经证明,烧蚀瑞利泰勒不稳定性(RTI)是热点混合的驱动因素。这促使人们转向更灵活的高绝热内爆设计[O。 A. Hurricane等,《物理学报》 Plasmas 21,056313(2014)]。在低绝热体直接驱动低温内爆中,壳的不稳定性也是性能下降的主要候选者[Goncharov et al。,Phys。 Plasmas 21,056315(2014)]。本文回顾了在OMEGA激光设备上进行的平面实验中获得的最新结果,这些结果专门用于对消融前沿的流体动力不稳定性进行建模和缓解。在应用于间接驱动方案时,我们描述了使用特定的烧蚀剂成分(例如叠层烧蚀剂或渐变掺杂模拟器)获得的结果。在直接驱动方案的应用中,我们讨论了专门用于研究带有特殊相位板的激光压印扰动的实验。在激波过渡阶段,Richtmyer-Meshkov相变的模拟是具有挑战性的,并且至关重要,因为该阶段为RTI增长奠定了基础。最近的工作致力于提高相变测量的准确性。最后,我们提出了一种基于使用低密度泡沫的新型压印缓解机制。泡沫通过参数不稳定性引起激光平滑,从而减少了激光在CH箔上的印记。 (C)2014 AIP Publishing LLC。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号