...
首页> 外文期刊>Physics of plasmas >A fast non-Fourier method for Landau-fluid operators~(a))
【24h】

A fast non-Fourier method for Landau-fluid operators~(a))

机译:Landau流体算子的快速非傅立叶方法〜(a))

获取原文
获取原文并翻译 | 示例
           

摘要

An efficient and versatile non-Fourier method for the computation of Landau-fluid (LF) closure operators [Hammett and Perkins, Phys. Rev. Lett. 64, 3019 (1990)] is presented, based on an approximation by a sum of modified-Helmholtz-equation solves (SMHS) in configuration space. This method can yield fast-Fourier-like scaling of the computational time requirements and also provides a very compact data representation of these operators, even for plasmas with large spatial nonuniformity. As a result, the method can give significant savings compared with direct application of "delocalization kernels" [e.g., Schurtz et al., Phys. Plasmas 7, 4238 (2000)], both in terms of computational cost and memory requirements. The method is of interest for the implementation of Landau-fluid models in situations where the spatial nonuniformity, particular geometry, or boundary conditions render a Fourier implementation difficult or impossible. Systematic procedures have been developed to optimize the resulting operators for accuracy and computational cost. The four-moment Landau-fluid model of Hammett and Perkins has been implemented in the BOUT++ code using the SMHS method for LF closure. Excellent agreement has been obtained for the one-dimensional plasma density response function between driven initial-value calculations using this BOUT++ implementation and matrix eigenvalue calculations using both Fourier and SMHS non-Fourier implementations of the LF closures. The SMHS method also forms the basis for the implementation, which has been carried out in the BOUT++ code, of the parallel and toroidal drift-resonance LF closures. The method is a key enabling tool for the extension of gyro-Landau-fluid models [e.g., Beer and Hammett, Phys. Plasmas 3, 4046 (1996)] to codes that treat regions with strong profile variation, such as the tokamak edge and scrapeoff-layer.
机译:一种高效通用的非傅立叶方法,用于计算Landau流体(LF)闭合算子[Hammett和Perkins,Phys。牧师[64,3019(1990)]提出了一种基于配置空间中修改的亥姆霍兹方程解(SMHS)之和的近似值。这种方法可以产生计算时间要求的快速傅立叶式缩放,并且即使对于具有较大空间不均匀性的等离子体,也可以提供这些运算符的非常紧凑的数据表示形式。结果,与直接应用“非本地化内核” [例如,Schurtz等人,Phys。 Plasmas 7,4238(2000)],从计算成本和内存需求两方面来看。该方法对于在空间不均匀性,特定几何形状或边界条件使傅立叶实现困难或不可能的情况下实现Landau流体模型感兴趣。已经开发了系统的程序来优化所得运算符的准确性和计算成本。 Hammett和Perkins的四矩Landau流体模型已使用SMHS方法用于LF封闭,以BOUT ++代码实现。对于使用此BOUT ++实现的驱动初始值计算与使用LF闭合的傅里叶和SMHS非傅里叶实现的矩阵特征值计算之间的一维等离子体密度响应函数,已经获得了极好的协议。 SMHS方法还构成了以BOUT ++代码实现的并行和环形漂移共振LF闭锁的实现基础。该方法是扩展陀螺-朗道流体模型的关键启用工具[例如,Beer和Hammett,Phys。 Plasmas 3,4046(1996)]的代码,用于处理轮廓变化强烈的区域,例如托卡马克边缘和刮擦层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号