首页> 外文学位 >Fast operator splitting methods for nonlinear PDEs.
【24h】

Fast operator splitting methods for nonlinear PDEs.

机译:非线性PDE的快速算子拆分方法。

获取原文
获取原文并翻译 | 示例

摘要

Operator splitting methods have been applied to nonlinear partial differential equations that involve operators of different nature. The main idea of these methods is to decompose a complex equation into simpler sub-equations, which can be solved separately. The main advantage of the operator splitting methods is that they provide a great flexibility in choosing different numerical methods, depending on the feature of each sub-problem. In this dissertation, we have developed highly accurate and efficient numerical methods for several nonlinear partial differential equations, which involve both linear and nonlinear operators.;We first propose a fast explicit operator splitting method for the modified Buckley-Leverett equations which include a third-order mixed derivatives term resulting from the dynamic effects in the pressure difference between the two phases. The method splits the original equation into two equations, one with a nonlinear convective term and the other one with high-order linear terms so that appropriate numerical methods can be applied to each of the split equations: The high-order linear equation is numerically solved using a pseudo-spectral method, while the nonlinear convective equation is integrated using the Godunov-type central-upwind scheme. The spatial order of the central-upwind scheme depends on the order of the piecewise polynomial reconstruction: We test both the second-order minmod-based reconstruction and fifth-order WENO5 one to demonstrate that using higher-order spatial reconstruction leads to more accurate approximation of solutions.;We then propose fast and stable explicit operator splitting methods for two phase-field models (the molecular beam epitaxy equation with slope selection and the Cahn-Hilliard equation), numerical simulations of which require long time computations. The equations are split into nonlinear and linear parts. The nonlinear part is solved using a method of lines combined with an efficient large stability domain explicit ODE solver. The linear part is solved by a pseudo-spectral method, which is based on the exact solution and thus has no stability restriction on the time step size.;We have verified the numerical accuracy of the proposed methods and demonstrated their performance on extensive one- and two-dimensional numerical examples, where different solution profiles can be clearly observed and are consistent with previous analytical studies.
机译:算子分裂方法已经应用于涉及不同性质算子的非线性偏微分方程。这些方法的主要思想是将一个复杂的方程式分解为更简单的子方程式,这些子方程式可以单独求解。运算符拆分方法的主要优点在于,它们根据每个子问题的特征,在选择不同的数值方法时提供了极大的灵活性。本文研究了涉及非线性和非线性算子的几个非线性偏微分方程的高精度和高效数值方法。我们首先提出了一种改进的Buckley-Leverett方程的快速显式算子分裂方法,该方法包括第三步:由两相之间压差的动态影响产生的有序混合导数项。该方法将原始方程分为两个方程,一个方程具有非线性对流项,另一个方程则具有高阶线性项,因此可以将适当的数值方法应用于每个分离方程:对高阶线性方程进行数值求解使用伪谱方法,而非线性对流方程则使用Godunov型中央逆风方案进行积分。中心迎风方案的空间顺序取决于分段多项式重构的顺序:我们测试了基于二阶minmod的重构和基于五阶WENO5的重构,以证明使用高阶空间重构可产生更精确的近似值然后,我们为两个相场模型(带斜率选择的分子束外延方程和Cahn-Hilliard方程)提出了快速,稳定的显式算子分裂方法,其数值模拟需要长时间的计算。这些方程分为非线性和线性部分。非线性部分是使用线的方法与有效的大稳定性域显式ODE求解器组合来求解的。线性部分通过伪光谱方法求解,该方法基于精确解,因此对时间步长没有稳定性限制。;我们已经验证了所提出方法的数值准确性,并在广泛的方法中证明了它们的性能。以及二维数值示例,其中可以清楚地观察到不同的溶液轮廓,并且与以前的分析研究一致。

著录项

  • 作者

    Qu, Zhuolin.;

  • 作者单位

    Tulane University School of Science and Engineering.;

  • 授予单位 Tulane University School of Science and Engineering.;
  • 学科 Mathematics.;Applied mathematics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号