首页> 外文期刊>Physics of plasmas >Study of applied magnetic field magnetoplasmadynamic thrusters with particle-in-cell and Monte Carlo collision. II. Investigation of acceleration mechanisms
【24h】

Study of applied magnetic field magnetoplasmadynamic thrusters with particle-in-cell and Monte Carlo collision. II. Investigation of acceleration mechanisms

机译:带粒子内碰撞和蒙特卡洛碰撞的应用磁场磁等离子体动力推进器的研究。二。加速机制研究

获取原文
获取原文并翻译 | 示例
           

摘要

The particle-in-cell method previously described in paper (I) has been applied to the investigation of acceleration mechanisms in applied-field magnetoplasmadynamic thrusters. This new approach is an alternative to magnetohydrodynamics models and allows nonlocal dynamic effects of particles and improved transport properties. It was used to model a 100 kW, steady-state, applied-field, argon magnetoplasmadynamic thruster to study the physical acceleration processes with discharge currents of 1000-1500 A, mass flow rates of 0.025-0.1 g/s and applied magnetic field strengths of 0.034-0.102 T. The total thrust calculations were used to verify the theoretical approach by comparison with experimental data. Investigations of the acceleration model offer an underlying understanding of applied-field magnetoplasmadynamic thrusters, including the following conclusions: (1) swirl acceleration mechanism is the dominant contributor to the plasma acceleration, and self-magnetic, Hall, gas-dynamic, and swirl acceleration mechanisms are in an approximate ratio of 1:10:10:100; (2) the Hall acceleration produced mainly by electron swirl is insensitive to the change of externally applied magnetic field and shows only slight increases when the current is raised; (3) self-magnetic acceleration is normally negligible for all cases, while the gas-dynamic acceleration contribution increases with increasing applied magnetic field strength, discharge current, and mass flow rate.
机译:先前在论文(I)中描述的单元格粒子方法已应用于研究外加磁等离子体动力推进器的加速机理。这种新方法是磁流体动力学模型的替代方法,可以实现粒子的非局部动力学效应和改善的传输性能。它用于模拟100 kW稳态,应用场,氩磁等离子体动力推进器,以研究放电电流为1000-1500 A,质量流量为0.025-0.1 g / s和施加磁场强度时的物理加速过程0.034-0.102T。总推力计算用于通过与实验数据进行比较来验证理论方法。加速度模型的研究提供了对应用场磁等离子体动力推进器的基本理解,其中包括以下结论:(1)旋流加速机制是等离子体加速的主要贡献者,而自磁,霍尔,气体动力和旋流加速器机制的比例约为1:10:10:100; (2)主要由电子旋涡产生的霍尔加速度对外部施加的磁场的变化不敏感,并且在电流升高时仅显示出很小的增加; (3)在所有情况下,自磁加速度通常都可以忽略不计,而气体动力加速度的贡献则随施加的磁场强度,放电电流和质量流量的增加而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号